
June 2018 | www.jfrog.comCopyright © 2018 JFrog Ltd.

Secure Clustered HA Docker Registries

Overcoming the Challenges of Using Docker in
Development and Production

White Paper

Table of Contents

Executive Summary

Introduction

 1. Reliable, Consistent and Efficient Access to Remote Docker Registries

 2. Reduce Network Traffic and Optimize Builds

 3. Full Integration With Your Build Ecosystem

 4. Security and Access Control

 5. Vulnerability Detection and Remediation

 6. Distribute and share images across your organization

 7. Smart Search and Artifactory Query Language (AQL)

 8. User Plugins

 9. System stability and reliability with Artifactory High Availability

 10. Maintenance and Monitoring

 11. JFrog Enterprise+: A Universal, End-to-End Solution For All Binaries

Summary

3
6
6
7
8
9
9

10
11
11
12
13
13
14

All rights reserved 2018 © JFrog Ltd www.jfrog.com 2

executive summary
Docker has become the defacto standard for containerization, however, the technology does not
adequately address several needs of software development organizations. For example, how do you
distribute and share images across an organization, and if you solve that one, how then do you
control access to those images? Or, how do you overcome issues of network connectivity and
latency that hinder the progress of developers and automated build processes alike?

The answer to all of these questions is JFrog Artifactory, the universal repository manager.
Artifactory is a secure, robust Docker registry; a single access point to manage and organize your
Docker images. With full support for the Docker registry API, Artifactory works transparently with the
Docker client.

The following table shows how JFrog Artifactory removes the overhead connected to managing your
Docker images.

All rights reserved 2018 © JFrog Ltd www.jfrog.com 3

Reliable, Consistent and Efficient Access to Remote Docker Registries

Reduce Network Traffic and Optimize Builds

Full Integration With Your Build Ecosystem

Remote public registries such as Docker
Hub are critical for development and
must be available at all times. If these
become inaccessible due to outage or
network issues, development and builds
grind to a halt.

Many developers and build machines/CI
servers constantly downloading
components can generate a lot of
network traffic and slow down builds.

Artifactory mitigates your dependence on Docker Hub and other
external resources by caching remote Docker images in a
remote repository; a local cache that serves as a proxy to the
remote resource. This overcomes any problems with
accessibility that stem from network issues or the resource going
down.

Once Artifactory has downloaded an image, it is locally available
to all developers and build tools/CI servers resulting in reduced
network traffic and quicker build processes.

However your build ecosystem is
constructed, your build systems,
running several builds a day, must have
easy access to your images.

CI systems resolve dependencies through Artifactory, and also
deploy builds to the corresponding Docker registry in Artifactory.
Since Artifactory stores exhaustive build information, running
builds through Artifactory enables fully traceable builds and
allows you to compare builds with built-in “Diff” tools. Artifactory
also simplifies release management through a series of simple
settings like staging, build promotion and VCS tagging to fully
automate the release management process.

Security and Access Control

Every organization needs to implement
security policies so that users can only
access internal and external resources
that they are authorized to use.

Artifactory provides security and access control at several levels.
Using “includes” and “excludes” patterns, teams and
permissions, and integration with common access protocols
such as LDAP, SAML and Crowd, Artifactory provides fine-grained
access control, from restricting complete repositories down to
restricting a single artifact, and from a group of any size down to
a single developer.

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories

To maximize reuse of your codebase,
and to ensure your developers work
under the same environment, you want
an easy way to share images within your
team and across your organization.

Using local repositories, Artifactory gives you a central location
to store your internal Docker images so that all teams can access
any artifact from a single URL. To support distant teams,
Artifactory offers a variety of replication capabilities that let you
synchronize any number of globally distributed sites with the
flexibility to accommodate nearly any multi-site topology.

All rights reserved 2018 © JFrog Ltd www.jfrog.com 4

Vulnerability Detection and Remediation

Distribute and Share Images Across Your Organization

Between the many images that
different developers download, and the
internal images you develop within your
own organization, finding something
specific can become quite complex.

Artifactory offers a variety of options for search, from simple
name search to common built-in search functions like “latest
version search” as well as a search by checksum that uses
Artifactory’s unique checksum-based storage.
Artifactory Query Language (AQL) takes search to new levels
offering a simple way to formulate complex queries based on
any number of parameters.

Smart Search and Artifactory Query Language (AQL)

While Artifactory provides an extensive
set of features to manage Docker
images, it’s impossible to accommodate
all the requirements that different
organizations may have.

User plugins extend the Artifactory REST API providing a simple
way to implement complex behavior. This gives you enormous
freedom to support virtually any custom requirement in your
workflow.

User Plugins

As a mission critical component in your
organization, any downtime in your
repository manager can have severe
consequences to your organization’s
productivity.

Artifactory can be deployed in a high availability configuration
with two or more servers that can take your uptime to levels of
five-nines availability.

High Availability

The use of open source components
exposes you to security vulnerabilities
and license compliance issues both in
development and production systems.

Artifactory’s unique and tight integration with JFrog Xray
enables you to prevent issues and vulnerabilities from getting
into your software by intervening at all stages of the pipeline.
Xray integrates with popular IDEs and CI servers to detect
vulnerabilities during development and CI builds. Even after your
Docker images are deployed to production, Xray continues to
scan them and provide policy violation alerts for new
vulnerabilities that have been reported. Through deep impact
analysis, Xray builds a component graph and identifies all Docker
images in your organization that are affected by a vulnerability or
policy violation.

https://jfrog.com/whitepaper/jfrog-xray-universal-component-analysis/
https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-LocalRepositories
https://jfrog.com/whitepaper/replication-using-artifactory-to-manage-binaries-across-multi-site-topologies/
https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-ChecksumSearch
https://www.jfrog.com/confluence/display/RTF/Checksum-Based+Storage
https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language
https://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability

JFrog Artifactory overcomes the inhibitors to taking Docker to production through capabilities such
as promoting images as immutable components through the development pipeline to production.
Features like high availability and cloud-based storage provide the stability, scalability and security
that enterprises require. And as a universal artifact repository, Artifactory provides the same native
level support for all major development technologies giving it a central role in any development
ecosystem.

All rights reserved 2018 © JFrog Ltd www.jfrog.com 5

 Maintenance and Monitoring

The number of Docker images you
generate can grow very quickly. Without
proper management, your systems can
quickly get clogged with old and
irrelevant images.

Artifactory keeps your system free of clutter with automatic,
scheduled cleanup processes, monitoring and controlling disk
space usage, and the ability to define “watches” on your most
critical Docker images.

JFrog Enterprise+: A Universal End-to-End Solution for All Binaries

In order to be competitive in today’s
markets, companies must continuously
improve their software in terms of
quality, consistency, security and global
reach. To meet that challenge,
companies must have sound DevOps
practices in place.

JFrog Enterprise+ is an end-to-end DevOps platform to create,
manage, scan, distribute and deploy software with ease. It
includes Artifactory to provide advanced management of Docker
images and other binary artifacts created with any of today’s
major development technologies, and JFrog Mission Control,
JFrog Xray, JFrog Distribution and Artifactory Edge nodes to cover
artifact maturity, security and vulnerability protection, release
management, analytics and distribution.

https://jfrog.com/enterprise-plus-platform/

Container technology is not new. It has been around since the year 2000 with freeBSD jails that had access
to the operating system kernel and a few other system resources. Then Docker came on the scene and
emerged as the “King of Containers” with more and more enterprises adopting Docker technology to run
applications in data centers, on IT infrastructure and developer laptops alike. But just as component-based
development spawned by the open source revolution created challenges in managing components within the
enterprise, the ever-increasing number of Docker images used by an organization presents similar challenges:
 How do you distribute and share images within your organization?
 How do you manage who can access an image?
 How do you make it easy to find images?
 How do you support a variety of policies for managing images?
 How do you ensure your images are always available for use?

The answer to all of these questions is Artifactory, a Binary Repository Manager that functions as a single
access point through which you can manage all of your Docker images. With full support for the Docker
Registry API, Artifactory is transparent to the Docker client and can therefore boost your organization’s
productivity by removing the overhead connected to managing your applications and images that are
developed to run in Docker containers.

Remote Repositories
A remote repository serves as a
caching proxy for a Docker
registry managed at a remote site
such as Docker Hub or JFrog
Bintray. Images are stored and
updated in remote Docker
Registries according to various
configuration parameters that
control the caching and proxying
behavior.

All rights reserved 2018 © JFrog Ltd www.jfrog.com 6

Introduction

1. Reliable, Consistent and Efficient Access to Remote
Docker Registries

When developing your Docker images, many of dependencies will be other images hosted on remote Docker
registries. These may be public resources such as Docker Hub, or even internal resources located at remote
sites such as a private Docker registry on JFrog Bintray. These remote resources are critical for your
development efforts and must be available at all times, however events beyond your control may render them
unavailable. Public resources such as Docker Hub may go down and connectivity issues may prevent access to
other remote resources beyond your internal network. Without access to Docker hub and other remote
Docker registries, development and builds grind to a halt.
 JFrog Artifactory is an intermediary between developers and
remote Docker registries and fully implements the Docker
Registry API specification. This allows Artifactory to proxy any
public or private Docker registry such as Docker Hub, JFrog
Bintray, or other private Docker registries, and treat them like
any other remote repository. When an image is first
downloaded, Artifactory stores it in a local cache. Upon
receiving subsequent requests for the image, Artifactory
performs a smart checksum search for it, and if it has already
been downloaded, then the locally cached copy is provided.
Therefore, each image is only downloaded once and is then
locally available to all other developers in the organization. This
reduces network traffic and effectively screens you from any
issues with the network, Docker Hub or any other remote
Docker registry providing you with consistent and reliable
access to remote Docker images.

learn more >

http://www.freebsd.org/doc/en/books/handbook/jails.html
http://www.docker.com
https://www.jfrog.com/confluence/display/RTF/Docker+Registry

All rights reserved 2018 © JFrog Ltd www.jfrog.com 7

Before:
Developer accesses Docker Hub, JFrog
Bintray and other remote Docker
registries through the internet.

After:
First time an image is accessed, Artifactory downloads it. From
then on, it is available locally to all developers.

Before:
Different users and build
servers download the same file.

After:
First time a file is accessed, Artifactory downloads it. From then on,
it is available locally to all other users and build servers.

user
F1

user

user

build server build server

Docker image

F2

F1 F2

F1

F2

user

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Docker image

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

user

user

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

Docker image

Debian Botfs

add emacs

add Apache

writable Container

Image

Image

Base Image

Kernel

2. Reduce Network Traffic and Optimize Builds
Since much of your code is likely to be assembled rather than built, you want to make sure that your usage of
Docker images downloaded from external resources is optimized. It makes no sense for two (or two hundred)
developers using the same image to download it separately. In addition to reliability, another benefit of
remote Docker registries is reduced networking. Once an image has been downloaded, it is then locally
available to all other developers in the organization (thus reducing network traffic). Naturally, this is all
transparent to the individual developer. Once images are accessed through Artifactory, the developer can get
on with what she does best and leave the rest to Artifactory.

If we look at network traffic from the point of view of a build server, the benefits are clear. A typical project may
depend on tens if not hundreds of images from external resources. For the server to build these projects, all
remote Docker images must be available to the server environment. Downloading all those required images
may generate Gigabytes of data traffic on the network which takes a significant amount of time delaying the
build process. By caching remote Docker images locally, the build process incurs much less networking and is,
therefore, much quicker.

All rights reserved 2018 © JFrog Ltd www.jfrog.com 8

3. Full Integration With Your Build Ecosystem

Confidently take Docker to production by setting
up promotion pipelines within Artifactory.

Learn More >

Learn More >

JFrog CLI
JFrog CLI is a compact and smart client that
provides an interface to access JFrog products
simplifying your automation scripts and making
them more readable and easier to maintain. JFrog
CLI accesses JFrog Artifactory through its REST API
making your scripts more efficient and reliable in
several ways: concurrent uploads and downloads
let builds run faster, checksum optimization avoids
redundant file transfers and wildcards and regular
expressions give you an easy way to specify files for
upload or download.

While it’s important to make it easy and efficient for your developers to access Docker images, it’s even more
important for your build systems which may be running builds many times a day.

Through a set of plugins, Artifactory provides tight integration with popular CI systems available today such as
Jenkins, Bamboo, and TeamCity. These systems use Artifactory to supply artifacts and resolve dependencies
when creating the build and also as a target to deploy build output to the corresponding local Docker registry.
One of the main benefits of running builds through Artifactory is fully reproducible builds. Artifactory stores
exhaustive build information including specific artifact versions, modules, dependencies, system properties,
environment variables, user information, timestamps and more. With this information, it is easy to faithfully
reproduce a build at any time. Moreover, with built-in “Diff” tools you can compare builds, and know exactly
what changes were introduced from one version to another. These capabilities can be invaluable when trying
to track down bugs that were reported in
specific versions released.

Artifactory also simplifies release management.
A series of simple settings configure things like
staging, build promotion, VCS tagging and more
essentially automating the release management
process. Through Artifactory’s support for
multiple secure, private Docker registries, you
can set up a promotion pipeline allowing you to
deploy immutable Docker images to your
production systems and run them with
confidence.

But what happens if you are using cloud-based
CI systems where you can’t apply plugins? In
that case, you can use JFrog CLI to resolve
dependencies and upload build output to
Artifactory providing the same level of build
automation. Essentially, since Artifactory is
platform agnostic, it can be integrated with
generic tools across all the build ecosystems
within your organization. Finally, once your
builds are automated, Artifactory will keep your
system free of clutter by cleaning up old builds
according to your organization’s maintenance
policies.

1

4

62

Declare new
dependencies

Deploy module
artifacts and
Buildinfo

5 Fetch
artifacts

Development
Team

Commit
the changes

3 Take
VCS
changes

Build

Version Control
System

https://www.jfrog.com/blog/docker-registry-to-production/
https://www.jfrog.com/confluence/display/CLI/JFrog+CLI

All rights reserved 2018 © JFrog Ltd www.jfrog.com 9

JFrog Xray
JFrog Xray provides continuous security
through universal artifact analysis. It works
with JFrog Artifactory to analyze software
components, and reveal a variety of
vulnerabilities at any stage of the software
application lifecycle. By scanning binary
components and their metadata, recursively
going through dependencies at any level,
JFrog Xray provides unprecedented visibility
to reveal vulnerable components lurking
anywhere in your organization.

4. Security and Access Control
Every organization needs to implement security policies so that developers can only store images in
authorized locations, and access images that they are authorized to use.

Artifactory offers a complete security solution to provide any number of secure, private Docker registries. As
a first line of defense, Artifactory lets you use naming patterns to define “Excludes” and “Includes” for access
so you can control which packages can even be cached in any particular remote Docker registry. Then, you can
assign different sets of permissions to users and groups to control access to each Docker registry. In this way,
for example, you can allow developers to deploy a release candidate to a local QA Docker registry, but only
allow authorized QA staff, who have ensured that the candidate has passed the required quality gates, to
move it to the “releases” registry from which production images are pulled. Finally, you can even use
Artifactory’s integration with LDAP, Active Directory, SAML, Crowd and others to control access to your servers.

Artifactory provides a level of security and access control that is unmatched in the market and effectively
replaces all other solutions to let you manage any number of secure and private Docker registries within your
organization.

5. Vulnerability Detection and Remediation
The use of open source components exposes you to security vulnerabilities and license compliance issues.
Even dependencies deemed “safe” during development can later be discovered to contain security flaws, and
by that time, your Docker image may already be in production systems exposing your products and services
to security breaches.

Artifactory’s unique and tight integration with
JFrog Xray enables you to prevent issues and
vulnerabilities from getting into your software by
intervening at all stages of the pipeline. By
integration with popular IDEs, Xray can notify
developers of suspicious dependencies as soon as
they are included in their projects. Once code is
committed and the CI process takes over, Xray
scans builds and fails them if vulnerabilities are
detected in any of the build artifacts and
dependencies. And even after Docker images have
been deployed to production systems, Xray
continues to scan them and can alert
administrators if new vulnerabilities have been
found. Through deep impact analysis, Xray not
only notifies you of vulnerabilities in your Docker
images, but identifies the exact dependency
containing the vulnerability and indicates all other
images in your organization that contain that
infected dependency. When available, Xray will
even notify you if there is a later version of the
dependency in which the vulnerability has been
fixed.

Learn More >

https://jfrog.com/whitepaper/jfrog-xray-universal-component-analysis/

All rights reserved 2018 © JFrog Ltd www.jfrog.com 10

Local Repositories
Local repositories are physical,
locally-managed repositories that are
typically used to deploy internal and
external releases as well as development
builds. By storing all your images in local
repositories, they can be made available
from a single access point across your
organization from one common URL.

6. Distribute and share images across your organization
To maximize reuse of your codebase, and to
ensure your developers work under the same
environment, you want an easy way to share
images within your team and across your
organization.

Using local repositories, Artifactory gives you a
central location to deploy and store your images -
effectively, a private Docker registry that can
replace Docker Hub and Docker Hub Enterprise.
When all teams know that any image can be
accessed from a single URL, managing access to
images between the different teams becomes
very easy. But what if you want to share your
images with colleagues who are in geographically
remote sites of your organization?

Learn More >

To allow sharing between different sites, you can
replicate your repositories to another instance of Artifactory which is outside of your local network. Replicated
repositories are automatically synchronized with their source periodically, so that your images can be made
available to different teams wherever they may be located around the world. With the capability for
multi-push replication and event-based pull replication, Artifactory lets you synchronize any number of
globally distributed sites and has the flexibility to accommodate a wide variety of multi-site topologies.______________________

https://www.jfrog.com/confluence/display/RTF/Local+Repositories
https://jfrog.com/whitepaper/replication-using-artifactory-to-manage-binaries-across-multi-site-topologies/

All rights reserved 2018 © JFrog Ltd www.jfrog.com 11

7. Smart Search and Artifactory Query Language (AQL)

Checksum-based search
Searching for an image by its checksum is a
powerful feature supported by Artifactory
through its unique checksum-based
storage. Even if an image has been
renamed, moved or deployed outside of
your organization, you can trace it back to
the original version. Simply run the image
through a checksum tool (SHA-256, SHA-1
and MD5 are supported) and run a
“Checksum” search in Artifactory to
retrieve the original version.

Working with third-party images can get quite
complex. Between the many images that different
developers download, and the internal images
you develop within your own organization, finding
something specific can become quite a challenge.

Artifactory provides you with flexible search
capabilities both through the UI, and using the
extensive REST API. You can find images based on
any combination of inherent attributes such as
name, version, timestamp, checksum and more.
Artifactory also provides some common built-in
searches. For example, you can ask Artifactory for
the “latest” version of any image without having to
specify a particular build number. Artifactory
knows how to compare all the different versions
of an image in any of its repositories and provide
the latest one available. You can also assign any
set of custom properties to your images, which
can later be used for search. For example, you can
tag all the specific versions of images used in a
product release with a “released” property to
easily reproduce the released version later on. But
the full power of search comes with the complete
flexibility of AQL. Using AQL, you can define
search queries to any level of complexity needed
to extract just the right images you are looking for.

While Artifactory provides an extensive set of
features to manage images, it’s impossible to
accommodate all the requirements that different
organizations may have. Enter user plugins.

User plugins present a long list of entry points
which effectively extend the Artifactory REST API
providing a simple way to implement complex
behavior. This gives you enormous freedom to
support virtually any custom requirement in your
workflow including scheduling tasks, managing
security and authentication, deployment,
maintenance and cleanup and more. To keep
things simple, user plugins are written as Groovy
scripts and have a simple DSL to wrap them as
closures within the extension points. The plugins
can be changed and redeployed on-the-fly, and
can even be debugged - all from within your
favorite IDE.

Learn More >

Artifactory Query Language
(AQL)
AQL is flexible query language that offers a
simple way to formulate complex queries
to search through your repositories using
any number of search criteria, filters,
sorting options and output fields. It takes
full advantage of the database underlying
Artifactory’s unique architecture and gives
you unlimited degrees of freedom to
formulate exactly the right query to find
those very specific packages you are
searching for. This is something that no
other Binary Repository can offer.

Learn More >

8. User Plugins

http://www.jfrog.com/confluence/display/RTF/Checksum+Search
http://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language

All rights reserved 2018 © JFrog Ltd www.jfrog.com 12

Learn More >

High Availability Systems
Systems that are considered
mission-critical to an organization can be
deployed in a High Availability configuration
to increase stability and reliability. This is
done by replicating nodes in the system and
deploying them as a redundant cluster to
remove the complete reliability on any
single node. In a High Availability
configuration there is no
single-point-of-failure. If any specific node
goes down the system continues to operate
seamlessly and transparently to its users
through the remaining, redundant nodes
with no down time or degradation of
system performance as a whole.

9. System stability and reliability with Artifactory
High Availability

Playing such a central role in the management of
images, your Binary Repository Manager can
become a mission-critical component of your
organization. Any downtime can have severe
consequences to your productivity, and you need
to ensure developers can access your Docker
registries at all times.

Artifactory supports a High Availability network
configuration with a cluster of 2 or more
Artifactory servers on the same Local Area
Network. A redundant network architecture
means that there is no single-point-of-failure, and
your system can continue to operate as long as at
least one of the Artifactory nodes is operational.
This maximizes your uptime and can take it to
levels of up to "five nines" availability. Moreover,
your system can accommodate larger load bursts
with no compromise to performance. With
horizontal server scalability, you can easily
increase your capacity to meet any load
requirements as your organization grows. Finally,
by using an architecture with multiple servers,
Artifactory HA lets you perform most maintenance
tasks with no system downtime.

Local Area N
etw

ork

Load Balancer

Artifactory

Artifactory

Artifactory

Cloud Storage

NFS Storage

Database

http://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability

All rights reserved 2018 © JFrog Ltd www.jfrog.com 13

10. Maintenance and Monitoring

11. JFrog Enterprise+: A Universal, End-to-End Solution
For All Binaries

With the growth of automated software delivery systems, the number of images you generate can grow very
quickly. Without proper management, your systems can quickly get clogged with old and irrelevant images.

Artifactory keeps your system organized and free of clutter with automatic, timed cleanup processes. With a
few simple settings, you can schedule tasks to clean up old builds and unused images. You can set restrictions
on disk space and monitor its usage, or define “watches” to receive an alert whenever there is a change to your
most critical images. And with an extensive REST API, Artifactory can support virtually any rule-based cleanup
protocol you would want to implement in your organization.

The JFrog Enterprise+ platform was designed to meet the growing needs of companies to develop and
distribute software. JFrog Enterprise+ provides DevOps with the tools needed to create, manage and deploy
software with ease and includes the following components:

JFROG ARTIFACTORY is the mothership of JFrog Enterprise+. It was designed from the ground up to fit in with any
development ecosystem. Uniquely built on checksum-based storage, Artifactory supports any repository
layout and can, therefore, provide native-level support for any packaging format. Essentially, regardless of the
packaging format you are using, Artifactory can store and manage your binaries, and is transparent to the
corresponding packaging client. The client works with Artifactory in exactly the same way it would work with
its native repository. For example, if you are working with Docker images, Artifactory proxies Docker Hub and
other remote Docker resources, lets you store your own images in local Docker registries, and works transpar-
ently with the Docker client. Similarly for npm, Vagrant, NuGet, Ruby, Debian, YUM, Python and more.

JFROG MISSION CONTROL is a single access points for managing all JFrog services and CI servers in your global
DevOps tool chain. JFrog Insight is a DevOps analytics engine added to JFrog Mission Control as a part of the
Enterprise+ Platform to measure, analyze and optimize your distribution flow.

JFROG XRAY increases trust in your software releases by providing automated and continuous governance and
auditing of software artifacts and dependencies throughout the software development lifecycle – from
development, through testing, and to production.

JFROG DISTRIBUTION is an on-premise tool that lets you orchestrate software distribution between two Artifactory
instances or from Artifactory out to multiple Artifactory Edge nodes.

JFROG ARTIFACTORY EDGE is a specialized version of Artifactory with the single purpose of delivering the contents of
a release bundle directly to a consumer, and will therefore, be installed as geographically close to the
compute edge as possible.

JFROG ACCESS provides a common authentication and authorization infrastructure for all JFrog products to
manage security entities. With the launch of JFrog Enterprise+, JFrog Access can be used to federate different
JFrog services into a single “circle of trust” enabling single-sign-on.

JFrog Enterprise+ provides the solid DevOps foundation that is essential to a company’s success and allows
software organizations to focus on the innovation that drives their business without having to worry about
infrastructure.

Learn more about the JFrog Enterprise+ platform Read the white paper>

https://jfrog.com/whitepaper/jfrog-enterprise-plus-an-end-to-end-platform-for-global-devops/

All rights reserved 2018 © JFrog Ltd www.jfrog.com 14

Summary

Development

docker push
docker pull
docker...

docker pull
docker...

Docker Client

QA/staging Production

Docker Client Docker Client

docker pull
docker...

REG 1

Image1

Image2

Image n

REG 2

Image1

Image2

Image n

REG n

Image1

Image2

Image n

Container technology has come a long way since freeBSD jails with Docker becoming commonplace in many
development organizations. However, it is still struggling to gain widespread acceptance in production systems.
JFrog Artifactory overcomes the inhibitors to taking Docker to production through capabilities such as
promoting images as immutable components through the development pipeline to production. Features like
high availability, cloud-based storage and image scanning and analysis provide the stability, scalability and
security that enterprises require. And as a universal artifact repository, Artifactory provides the same native
level support for all major development technologies like Maven, NPM, NuGet and Debian giving it a central
role in any development ecosystem.

For more information on JFrog Artifactory, please contact us at info@jfrog.com.

REST API

