
January 2017 | www.jfrog.com

White Paper

Copyright © 2017 JFrog Ltd.

A Vision of
Liquid Software

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

Executive Summary...3

Release Fast or Die..4

 Maintaining a Competitive Edge...4

 Fixing bugs and issues...4

 Removing Security Vulnerabilities..4

The Vanishing Version...5

Liquid Software and Continuous Update...6

The Last Mile..7

 Trust and Security...7

 Software Quality...7

 Versionless Software..8

 Transparency and Coordination..8

 Decreasing Release Cycles..8

Conclusion..9

2

Table of Contents

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

In modern industry, every company is (or at least has) a software development organization that must
develop websites, mobile apps and other software. The capability to release software fast is critical to
the company’s success for several reasons. First and foremost, a company must be able to constantly
improve its offering in order to differentiate from the ever-present competition. Second, bugs and
issues must be fixed as quickly as possible; losing customers due to a malfunctioning product is
never an option. Third, any security vulnerabilities found once a product is in production must be
remediated immediately, and there are many more reasons.

For each release of software, it is normal to assign a version number, however, this too is changing.
The concept of a version is melting away, and this is due to three factors:
•	 Short	release	cycles: Software automation has vastly reduced release cycles. New releases are
 delivered so frequently that customers are no longer concerned with the version number. They just
 want to know that they are safely running on the “latest” version at all times.
•	 Distributed	software: Software is becoming more distributed and is often delivered as a collection
 of micro-services on the cloud. Since each microservice is updated on an independent release cycle,
 the aggregated “macro” version is constantly changing making it meaningless.
•	 Internet	of	Things	(IoT):	Managing software updates for the billions of devices connected to the
 internet can only be efficiently managed through automatic updates without human intervention,
 and these devices are not concerned with a version number.

Looking forward, as release cycles get shorter and microservices get smaller, we can imagine a world
in which at any one time, our systems’ software is being updated. Effectively, software will become
liquid in that products and services will be connected to “software pipes” that constantly stream
updates into our systems and devices; liquid software continuously and automatically updating our
systems with no human intervention. This is the next big challenge of the DevOps revolution. Just as
we turn on a tap, expect water to come out without having to think about it, and trust the quality of the
water, our systems and devices should be continuously and automatically updated with software we
can trust and consume safely. However, there are still some challenges to address.

3

Executive Summary

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

Trusting automatic updates cannot be taken for granted. Robust security mechanisms must be in
place to confirm the safety of software that is streamed to our systems and devices. The quality of
software updates must also improve so companies can be fully confident they will not break existing
systems. Then there is the vanishing version to which a viable alternative must be found, so that if
something does go wrong, a vendor can precisely identify the software that is responsible for the
issue. There must also be a way for automatic updates to be coordinated with the systems they are
updating to verify full compatibility. Finally, release cycles are still not short enough. Vendors are still
struggling with available tools, the pace of DevOps adoption, code size and automation to continue
reducing development time.

As release cycles continue to get shorter and tend to zero, software will become liquid, continuously
flowing to automatically update the compute edge. To get there, automation must be extended until it
is pervasive in all software development organizations. Standard and trusted security systems will have
to authenticate and validate software flowing through the pipes, and exhaustive metadata will provide
transparency to ensure full compatibility. As these systems and mechanisms continue to improve, the
emergence of continuous and automatic update of liquid software is only a matter of time.

4

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

Modern industry has evolved to the point where a company’s survival depends, amongst other things, on
how quickly it can release software and keep it updated on the compute edge. While this may be more
intuitive in technology companies, it is less obvious for companies that, on the face of it, are in other
verticals. So first, let’s remove that distinction and blur the lines. Maintaining complex websites, mobile apps,
assembly lines, sales funnels, distribution chains and many other functions requires software, and much of
this software is developed within the company. Therefore, in practise, every modern company is (or at least
has) a software development organization and must have the capability to release software fast. Here are
just a few reasons why.

Maintaining a Competitive Edge
In any marketplace, a company must be able to constantly improve its offering in order to differentiate itself
from the competition. As soon as one company adds a new feature that is in demand, others scramble to
add it and catch up. To stay ahead of the competition, a company needs to constantly set the pace with new
capabilities and leave the scrambling to others.

Fixing	bugs	and	issues
Nothing is more frustrating to an end user than software that doesn’t work. Users have short spans of attention
and very little patience when “clicking the button” doesn’t produce the expected results. They very quickly take
their business elsewhere and browse to the ever-present competition. Whether the company is running an
eCommerce site or a reservation system, the presence of a bug can very quickly lead to millions of dollars lost.

Removing	Security	Vulnerabilities
The cyber security market has been estimated to reach $170 Billion by 2020. This is a testament to the
amount of effort companies have to expend to keep their software safe. Security vulnerabilities detected in a
company’s systems must be remediated as quickly as possible. The faster a company can release a software
update to remove a detected vulnerability, the quicker it can protect its software.

So it’s clear that releasing software fast is paramount to a company’s success, and each release is given an
identifier - the version number, however this too is changing.

5

Release Fast or Die

http://www.forbes.com/forbes/welcome/?toURL=http://www.forbes.com/sites/stevemorgan/2015/12/20/cybersecurity%E2%80%8B-%E2%80%8Bmarket-reaches-75-billion-in-2015%E2%80%8B%E2%80%8B-%E2%80%8Bexpected-to-reach-170-billion-by-2020/&refURL=&referrer=

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

In the old days of monolithic, bi-annual software deliveries, a release was a colossal event that took weeks to
prepare, and due to the amount of changed code, was a risky undertaking. On the receiving end, customers would
spend a lot of time unpacking the software, validating its different parts, and testing its integration with current
systems until finally (and carefully) deploying it to production. Each monolithic version was ceremoniously tagged
with a version number. This was a critical parameter of the software since it identified all the parts that worked
coherently together, and was also needed for support staff to work through any issues reported by a customer.
Today, the concept of a “version” is melting away due to three factors: short release cycles, distributed software and
the Internet of Things (IoT).

Software automation has vastly reduced release cycles. Deliveries have accelerated so much that some
forward-looking companies are releasing software several times a day. Customers no longer want (or even
have the capacity) to unpack the software, test it and validate it for every single release. They just want to know
that they are on the “latest” stable version at all times and that it will integrate smoothly with their currently
running systems. The actual version number is irrelevant.

In addition, software is becoming more and more distributed. What might once have been run as a fully on-
prem localized installation, is today, run as an array of microservices on the cloud where each microservice
is updated on an independent release cycle. With each “micro update” the “macro version” changes, which
effectively makes it meaningless since nobody is really aware of what version they’re running on.

Finally, the number of devices connected to the internet is exploding with predictions reaching over 50 Billion
devices by 2020. As more and more devices get on the grid, managing the update of their software can only
be handled efficiently through automatic updates without human intervention, and devices don’t really care
what version they’re running.

6

The Vanishing Version

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

We started with monolithic, manual software releases with a distinct version number, and got to
software built from distributed microservices released in rapid, automated cycles, but with no
meaningful version number. If we now extrapolate the current state into the not-so-distant future,
we can imagine a world where release cycles get so short, and microservices become so small that at
any one time, it’s likely that something is being updated. In effect, software will become “liquid” in that
we will be connected to “software pipes” that stream updates into our systems and devices; liquid
software continuously and automatically updating our systems with no human intervention.

While eyebrows may be raised at this idea, the concept is not foreign, and in fact, we already
encounter it in our everyday lives. We turn on the tap, and take it for granted that water will come
out. We trust the municipal authorities to make sure the water is clean enough to drink, or provide
us with alerts and warnings that it may only be used for bathing or irrigation, or not at all if water
sources have become severely contaminated. Similarly, when we plug a device into an electrical
outlet, we expect the device to receive a steady supply of electricity at the right voltage so our device
“just works”. Similarly for cooking gas or any other utility we take for granted. None of us tests our
utilities; we just trust their quality. So why can’t we just connect our systems and devices to “software
pipes” and trust that our software will be continuously updated, safely, robustly and automatically?
This is the next big challenge that DevOps must address.

Liquid Software and Continuous Update

7

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com 8

While there is still a way to go, we are already closer to Liquid Software and Continuous Update than
most people and companies think. In many cases software updates are already automatic. Take
mobile devices as an example. Most of us set a checkbox in our cellphone’s configuration to allow
automatic updates of its firmware. The update just happens, and is even smart enough to wait until
we’re on a Wi Fi network so as not to burden our data plan. Similarly, when we download an app, we
allow the vendor to stream updates to us automatically through the corresponding app store. But
even those of us who don’t allow automatic updates will click “I accept” when prompted without really
thinking about it. We won’t bother reading any EULA we are confronted with, and even if we did read
it, it’s unlikely that we would understand its legal jargon. At the end of the day, we just want the latest
software without having to think about it.

This is the mode of operation we are moving towards for enterprise software, but for this to be
widespread, there are still some challenges to overcome.

Trust and Security
When we turn on the tap, or plug into an outlet, we place trust our utility provider. That trust is
based on past experience and the knowledge that the regulatory authorities are monitoring the
relatively few utility providers we use every day, and ensuring that nobody is tampering with them.
An enterprise software organization is likely to be “nurtured” by many different providers. Security
mechanisms must be in place to validate the identity of each provider and confirm that the flow of
software continuously updating our systems has not been tampered with.

Software Quality
Before an enterprise deploys a periodic update to its production environment, it will run a battery
of tests to make sure nothing breaks. Nevertheless, production bugs and system outages are still
costing enterprises billions of dollars each year. For enterprises to trust that continuous update is
robust and will not break their production systems, liquid software quality will have to be be much
better than the updates we get today. This places a heavy burden on vendors to provide software
updates with a very high level of confidence.

The Last Mile

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com

Versionless Software
As already discussed, software is increasingly becoming versionless. End users (certainly those that
are allowing automated continuous update) won’t be able to identify the software they are running
by a version number. That also means that if some disastrous bug is discovered in an update, there’s
no option to roll it back. And if the customer contacts the vendor’s help desk to report a problem,
or even to just get help with a feature, there must be a way for support personnel to identify exactly
what the customer is running.

Transparency and Coordination
Since software will become versionless, there must be a way to coordinate what is currently running
with the new software updating it. The automated mechanisms that install the latest updates flowing
through the pipe will need a way to determine that the update is compatible and desired.

Decreasing Release Cycles
Software vendors are still struggling to shorten their release cycles. There are many barriers to
overcome such as availability of tools, the pace at which DevOps practises are adopted,code size,
implementing fully automated pipelines and more. Some companies are succeeding. In 2011,
Amazon publicly announced that it was deploying code to its production systems every 11.6 seconds.
By the end of 2014, Amazon was deploying every second (albeit, to its own systems). So while not
every company is Amazon, their case shows that it’s possible.

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com 9

https://www.youtube.com/watch?v=dxk8b9rSKOo&feature=youtu.be&t=10m10s
http://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html

All rights reserved. 2017 © JFrog Ltd. January 2017 | JFrog Ltd. | www.jfrog.com 10

Software development organizations continue to release software at an ever increasing-pace with
ever-decreasing cycles. Today’s challenge for enterprise software is to embrace this unstoppable
trend and get release cycles down to zero to achieve controlled, secure, continuous update on
everything that uses software, from computing systems, to smartphones and tablets, to consumer
electronics to simple connected devices in the IoT. Once that is achieved, software will be liquid,
flowing continuously from development environments, through distribution platforms to perform
automatic updates. To get there, the same automation that has reduced release cycles to mere
seconds (in some cases), will have to be extended further until it is pervasive in all phases of software
development in every development organization. The security risks inherent in automated systems
will be mitigated by standard mechanisms that authenticate the production end of the software
pipe to the consumption end, and validate that the software flowing through the pipe has not been
tampered with. The whole update process will have to be mediated through exhaustive metadata
that clearly describes the software and provides the transparency that software consumers need in
order to understand what is being installed on their systems. At the end of the day, through the use
of standard security systems, and metadata, the emergence of continuous and automatic update of
liquid software is only a matter of time.

Conclusion

