
Publish: May 2023

Copyright © 2023 JFrog Ltd.

USING ARTIFACTORY
TO MANAGE BINARIES ACROSS

MULTI-SITE TOPOLOGIES

TABLE OF CONTENTS

INTRODUCTION

THE JFROG PLATFORM AND MISSION CONTROL

FEDERATING REPOSITORIES

HOW TO IMPLEMENT FEDERATION TOPOLOGIES

 3

 3

3

4

Compute Locally, Develop Globally

Artifactory for Multisite Development

Scaling Globally with Federated Repositories

Easy Administration

Scalable for the Enterprise

Secure Circle of Trust

5

6

6

7

7

 Star Topology

Star Topology

Full Mesh Topology

Full Mesh Topology

8

8

REPLICATING REPOSITORIES

HOW TO IMPLEMENT REPLICATION TOPOLOGIES

9

 Push Replication

Comparing Replication Types

12

13

13

Pull Replication

Scheduled

Event-Based

Scheduled

Event-Based

13

15

15

15

16

17

Single Local Repository Pushed Between Two Sites

Event-based multi-push replication

Event-based Pull replication

18

18

18

Single Virtual Repository Consisting of a Local and Remote Repository

20

Single Virtual Repository Consisting of Two Local Repositories

20

21

22

TABLE OF CONTENTS

23

25

28

29

30

31

Single Virtual Repository Consisting of Multiple Local Repositories

(Multi-Push Replication)

Single Local Site with Artifacts Replicated

Geo Synchronized Topology

RECOMMENDED CONFIGURATIONS

Single Virtual Repository Consisting of one Local and Multiple Remote

Repositories (Pull Replication)

CONCLUSION

All rights reserved 2023 © JFrog Ltd. | www.jfrog.com 3

RELIABILITY

The days when applications were created by a small team of developers in one room are long past.
Enterprise software development is now a highly collaborative endeavour of packages shared by
intersecting teams across multiple sites spread across the world.
Global, multisite collaboration requires an architecture for managing software artifacts and deployable
packages that is also global in scale.

Performance over a network degrades steeply as sender and receiver are farther apart. For an organization
with development teams across the world, it’s critical to make sure that network issues like latency,
bandwidth limitations, or connection outages don’t harm productivity.
To always build at top speed, all the parts needed to build an application should be physically near to where
the build work is done, including shared resources such as external and internal dependencies. When
sharing these artifacts across multiple sites, they need to be available locally at each site, either within the
local network (on-premises) or in the same region (cloud).
This requires multisite topologies that can locally synchronize a global set of shared artifact repositories, so
that every build, at every site, can complete fast, without fail.

Artifactory’s unique set of multisite capabilities ensure locality in any network topology:
Federation of repositories is JFrog’s innovative technology for bidirectional mirroring between enterprise
repositories in di�erent installations of Artifactory. When an Artifactory repository is joined to a repository in
Artifactory at another site, artifacts pushed to one are automatically duplicated in the other. When properly
con�gured, this can ful�ll a full mesh topology across multiple sites.
Replication of repositories o�ers a variety of topology choices, depending on your needs. These include
both push and pull replication topologies, as well as scheduling strategies such as on-demand, on-schedule
or event-based replication.
We’ll describe the best practices in architecture and use for each of these capabilities in JFrog Artifactory Pro
and Enterprise editions.

ARTIFACTORY FOR MULTISITE DEVELOPMENT

COMPUTE LOCALLY, DEVELOP GLOBALLY

INTRODUCTION

Artifactory is the core component that powers the JFrog DevOps Platform, a uni�ed end-to-end platform for
accelerating software development. Through a single pane of glass and central permissions management,
you can manage the full lifecycle of your binaries from CI/CD automation, security scanning, to distribution
to the edge.

JFrog Mission Control (available with an Enterprise subscription or higher) is the enterprise-scale solution to
monitor and manage globally distributed instances of Artifactory from within the JFrog Platform single pane
of glass. Replication can be con�gured by creating new repositories in multiple instances, and then
con�guring replication between them (one-to-one, or one-to-many).

Mission Control displays a map of participating JFrog Platform Deployments.

Once a multisite topology is created, either by federation or replication of repositories, Mission Control will
show the network of relationships between the JFrog deployments.

All rights reserved 2023 © 4 JFrog Ltd. | www.jfrog.com

THE JFROG PLATFORM AND MISSION CONTROL

npm-local

npm-local

npm-local

TOKYOSAN FRANCISCO

LONDON

Federated Repositories are JFrog’s innovative, bidirectional mirroring technology that provides enterprise
administrators an option that is easy to set up and maintain for multisite teams and projects. This repository
mirroring technology continuously synchronizes a federated set of Artifactory repositories and their
metadata across multiple sites.

With federated repositories, enterprises can:

Federated repositories are
supported only in JFrog
Enterprise subscriptions or
above.

.

.

.

.

Collaboratively develop software across geographically
distributed teams

Synchronize frequently updated binaries between sites
securely and e�ciently

Scale development globally
Ensure all shared artifacts and metadata are current to the
latest version everywhere

Replicate for disaster recovery

All rights reserved 2023 © 5

FEDERATING REPOSITORIES

 JFrog Ltd. | www.jfrog.com

Through federation, a local repository in one Artifactory deployment (for example, in Amsterdam) can be
logically joined to synchronize with a local repository in another Artifactory deployment (for example, in
Bangkok). When joined in this way, artifacts and metadata pushed to the repository in Amsterdam will
automatically be replicated to the repository in Bangkok. And because this federation is bidirectional, data
pushed to the repository in Bangkok is replicated in Amsterdam as well.

In this way, Artifactory repositories joined in a federation provide each of these sites a uni�ed, locally
accessible repository of shared global data.

With a JFrog federated repository, an authorized administrator at one site can create and join local
repositories at several JFrog Platform deployments into a single, multisite federation. There’s no need to
coordinate setup between platform administrators at di�erent physical sites across time zones to create
your federation topology.

Setup and maintenance can be quickly and easily accomplished from any a�liated physical site: all changes
to con�guration and repository settings are synchronized automatically across all federation members.

All rights reserved 2023 © 6 JFrog Ltd. | www.jfrog.com

SCALING GLOBALLY WITH FEDERATED REPOSITORIES

EASY ADMINISTRATION

AMSTERDAM

BANGKOK

Bidirectional
Mirroring

CIVERSION
CONTROL

FEDERATED RESPOSITORY

FEDERATED RESPOSITORY

CIVERSION
CONTROL

You can federate repositories among any of the 30 repository types supported in Artifactory’s universal
package management. All repositories in a federation must be of the same type, of course, but you can
create multiple federations for di�erent package types. For example, you can have a federation of npm
repositories, another of Maven repos, and another for Docker.

Any repository federation can include up to 10 members (local repositories in di�erent JFrog Platform
deployments (JPDs) at remote sites) of the same repository type, providing broad geographical coverage.

Administrator View

Federated repositories use binary provider tokens to establish a circle of trust among members without
having to set up certi�cates at each site. JFrog Mission Control automatically enables all JPDs for secure
federation, or you can manually specify secure JFrog Platform URLs.

Administrators at each site can enable or restrict access to federated repositories by their own users through
the permission groups managed on their own JPD.

All rights reserved 2023 © 7

SCALABLE FOR THE ENTERPRISE

SECURE CIRCLE OF TRUST

 JFrog Ltd. | www.jfrog.com

In a star topology, a local repository in a JPD acts
as a central hub to other JPD repositories in the
federation. The hub JPD repository shares its
artifacts and metata with everyone in the
federation, and everyone shares theirs with the
hub. However, the other sites do not share with
each other.

In this example, we con�gure a federation from
the cloud instance on AWS as the central hub to
connect to the a�liate sites. No federated
repository con�guration takes place at the three
on-prem sites.

BANGKOK

AWS

DENVER

CAPE TOWN

STAR TOPOLOGY

All rights reserved 2023 © 8 JFrog Ltd. | www.jfrog.com

HOW TO IMPLEMENT FEDERATION TOPOLOGIES

To start working with Federated repositories, you will �rst need to set up cross-instance authentication
(Circle-of-Trust) between the JFrog Platform deployments through a shared public certi�cate among all
participating instances. Once this is con�gured, the platform administrator may perform CRUD (Create,
Remove, Update and Delete) actions on the repositories based on their prede�ned set of permissions.
All the actions performed on one of the Federated repositories will automatically be synchronized and
re�ected on all of the Federated members.
It’s important to understand that, within a federation, bidirectional mirroring of artifacts and metadata only
occurs between repositories that have declared a direct connection between them. Mirroring does not
automatically cascade to other, secondarily connected repositories.

For example, consider an multisite example with these four JFrog Platform deployments:
 A cloud instance on Amazon Web Services (AWS)
 An on-prem site at a branch development o�ce in Bangkok
 An on-prem site at a corporate o�ce in Cape Town
 An on-prem site at the main data center in Denver

Let’s look at some example topologies to see how this works.

.

.

.

AWS

 DENVER

CAPE TOWN

BANGKOK

NOT FULL MESH

All rights reserved 2023 © 9 JFrog Ltd. | www.jfrog.com

So in this example:
.
.
.

An artifact pushed to the repository in AWS will be mirrored in Bangkok, Cape Town, and Denver
An artifact pushed to the repository in Bangkok will be mirrored only on AWS.
An artifact pushed to the repository in Cape Town will be mirrored only on AWS
An artifact pushed to the repository in Denver will be mirrored only on AWS

In a full mesh topology, all artifacts and metadata
in the federation are mirrored in local repositories
at all sites. All users at all sites have access to all
data according to their locally administered
permissions, with minimal network latency.

To accomplish this, platform administrators must
be careful to be complete in their federation
connections.
For instance, the admins in our example
organization might mistakenly con�gure a
federation as shown in this diagram:

FULL MESH TOPOLOGY

As can be seen, there are signi�cant limitations to this topology. For instance, artifacts created in Bangkok
will not be available locally to developers in Cape Town(although all sites can access all artifacts through the
cloud instance on AWS).

This type of topology may be useful in certain situations, such as when most artifacts and metadata are
expected to be produced at a central site, but need to be available locally to a�liate sites.

AWS BANGKOK DENVERCAPE TOWN

BANGKOK

CAPE TOWN

DENVER

AWS

FULL MESH

AWS

DENVER

CAPE TOWN

BANGKOK

While this topology diagram may appear to create a full mesh network through this circular set of
connections, it does not. Bidirectional mirroring of artifacts and metadata only occurs between repositories
that are directly connected in the federation.

In this con�guration, each site will mirror only two of the others, not all three:

To correctly con�gure a federated repository for full mesh, each site must be con�gured to directly federate
with the other three.

All rights reserved 2023 © 10 JFrog Ltd. | www.jfrog.com

AWS BANGKOK DENVERCAPE TOWN

BANGKOK

CAPE TOWN

DENVER

AWS

All rights reserved 2023 © 11

 JFrog Ltd. | www.jfrog.com

In this full mesh con�guration, each site will mirror all others:

AWS BANGKOK DENVERCAPE TOWN

BANGKOK

CAPE TOWN

DENVER

AWS

All rights reserved 2023 © 12

REPLICATING REPOSITORIES

 JFrog Ltd. | www.jfrog.com

Replication of repositories can be more complicated to con�gure and administer than federated
repositories, but they may be a better �t in some circumstances:

To administer replication of repositories, you will need to understand some key Artifactory concepts:

Artifactory supports two primary modes of replication: Push and Pull replication. Each mode can be
triggered in two ways, either on a regular schedule or by events.

On-demand proxy is the default behavior of all
remote repositories, regardless of whether you
are proxying another node under control of your
organization, or one that belongs to a 3rd party.
When a job asks for an artifact from an
on-demand remote repository, Artifactory will
download this �le and cache it for future use. You
can suppress this behavior by selecting the
O�ine button in the repository con�guration. In
this case Artifactory will only provide remote
artifacts that have already been cached.

Replicating artifacts between sites can rely on the
on-demand proxy implemented by remote
repositories or the di�erent replication options
implemented with local repositories.

You do not wish to synchronize repositories bidirectionally.
You prefer to synchronize repositories on a scheduled basis.
You prefer to maintain pull (on-demand) relationships between repositories.
You only have a Pro-level (not Enterprise) subscription.

A remote repository serves as a caching proxy for a
repository managed at a remote site such as JCenter
or Maven Central. Artifacts are stored and updated in
remote repositories according to various
con�guration parameters that control the caching
and proxying behavior.

Learn more >

Learn more >

Local repositories are physical, locally- managed
repositories into which you can deploy artifacts.
Typically, these are used to deploy internal and
external releases as well as development builds, but
they can also be used to store binaries that are not
widely available on public repositories such as 3rd on
public repositories such as 3rd local repositories, all of
your internal resources can be made available from a
single access point across your organization from one
common URL.

.

.

.

.

All rights reserved 2023 © 13

SCHEDULED

PUSH REPLICATION

 JFrog Ltd. | www.jfrog.com

Push replication is used to synchronize local repositories, and is implemented by the Artifactory server on
the near end invoking a synchronization of artifacts to the far end.
Push replication is useful when an artifact producer wants to distribute their artifact to other sites, which will
use this artifact as a dependency.

Other than rare exceptions, a user should never have “write” access to the far end, and there should be only
one master site with other sites slaved to it.
There are two ways to invoke a push replication: Scheduled and Event-Based.

Pushes are scheduled asynchronously at regular intervals using a Cron expression that determines when the
next replication will be triggered. Even if the plan is to use an event-based replication, the Cron expression is
still required. The scheduled replication will serve as a backup for the event-driven replication, ensuring that
all artifacts are synced, even if the event-driven replication of one of the artifacts failed for some reason, for
example a network error.
Because of the checksum-based nature of Artifactory’s storage and replication mechanism, no artifacts will
be transferred if they already exist on the other side, even under a di�erent name or path, so no harm is
done when you con�gure overlapped replications such as both event-driven AND scheduled.

EVENT-BASED
Pushes occur nearly in real-time since each create, copy, move or delete of an artifact and its metadata is
immediately propagated to the far end.

Artifactory supports event-based push replication from one repository to another single repository on the
far end. Artifactory Enterprise supports multi-push which allows you to replicate a repository to multiple
JFrog deployments simultaneously. The alternative is setting up replication chains, which means that each
node will propagate artifacts to another node, creating a serial chain of deployments. This solution is more
complicated to setup and increases the inconsistency between the deployments, and therefore does not
comply with best practice for repository replication.
There is also the risk of creating a replication loop (A pushes to B, B pushes to C, C pushes back to A) which
can have disastrous e�ects on your system and must be strictly avoided. If you need to replicate to multiple
repositories, and don’t have Artifactory Enterprise edition, pull replication is recommended.

To ensure that all changes on the near end are propagated to the far end, a scheduled replication is
mandatory in conjunction with event based replication.

B C

A

REPLICATION LOOP TO BE STRICTLY AVOIDED

All rights reserved 2023 © 14 JFrog Ltd. | www.jfrog.com

PULL REPLICATION
Pull replication is a scheduled pre–population of a remote repository cache. It’s useful for remote sites that
need to get the artifacts they require not by the �rst request, as in the normal operation of remote
repository, but even earlier. For example, artifacts produced on one day in the remote site can be replicated
during the night and sit in cache waiting to be consumed as dependencies the next morning.

Pull replication is invoked by a remote repository in two ways: Scheduled and Event-Based.

The remote repository invoking the replication from the far end can pull artifacts from any type of repository
- local, remote or virtual.
Synchronized deletion can be con�gured in both push and pull replication repositories. This is optional and
not enabled by default. On-demand proxy replication does not support deletions.

SCHEDULED
Pull replication is invoked through a schedule that’s de�ned by a Cron expression to synchronize
repositories at regular intervals.

EVENT-BASED
Pull replication is invoked by a remote repository from the far end and can pull artifacts from any type of
repository - local, remote or virtual of the source Artifactory server. Pulls occur nearly in real-time since each
create, copy, move or delete of an artifact and its metadata is immediately propagated to the far end from
the source Artifactory server.

When an event triggers a replication, artifacts that are in the process of being replicated to the far end are
already available for use through Artifactory’s remote-proxy mechanism of remote repositories, even if the
replication process is not yet complete. As a result, requests for these artifacts will not fail.

With event-based pull replication, many target servers can pull from the same source server e�ciently
implementing a one-to-many replication, thus reducing the tra�c on target servers since they do not have
to pass on artifacts in a replication chain.

Event-based pull replication allows leveling the network throughput bursts involved with scheduled
replications. It also reduces the need for computing resources on the source node, distributing the
replication computation logic to the target nodes.
Support for event-based pull replication is available only with the Artifactory Enterprise edition.
To ensure that all changes on the near end are propagated to the far end, a scheduled replication is
mandatory in conjunction with event based replication.

All rights reserved 2023 © 15 JFrog Ltd. | www.jfrog.com

ALL RIGHTS RESERVED 2023 © 16

COMPARING REPLICATION TYPES

 JFROG LTD. | WWW.JFROG.COM

The following tables summarize the di�erence between the di�erent replication options and triggering
methods:

Network Topology
The source initiates the network communication with
the target.

Replication con�guration at the source. Centralized
control.

Network Topology
The target initiates the network communication with
the source (For event-based pull, two-way
communication is required).

Replication con�guration at the remote. Distributed
control.

Replicated artifacts are indexed on the target
repository, keeping the repository locally consistent.

Index is based on SOURCE repository, but in an o�ine
scenario it may not be locally consistent.

Artifacts are available immediately even before
synchronization completes.

Reduces compute overhead by not recalculating index
on remotes.

PUSH REPLICATION PULL REPLICATION

Shortest time to Global consistency.
Minimizes time repositories are not
synchronized.

Only artifacts that are resolved on
the far end are replicated (and
cached).

EVENT-BASED REPLICATION ON-DEMAND PROXYSCHEDULED (CRON) REPLICATION
Replication tra�c managed to low
tra�c periods.

The replication tra�c is spread out.
No ‘lump jobs’.

Reduces the network tra�c since
artifacts are only fetched and stored
on demand.

Guarantees full synchronization in
case of a missed event or error
provided.

Enables smooth geographic failover
and disaster recovery.

Reduces storage at remote sites due
to on-demand caching.

Proxying available only via the
remote repository.

The following sections use the example of an organization with four data centers. One in Amsterdam, one in
Bangkok, one in Cape Town and one in Denver.

HOW TO IMPLEMENT REPLICATION TOPOLOGIES

All rights reserved 2023 © 17 JFrog Ltd. | www.jfrog.com

While a star topology presents bene�ts for both push and pull replication, it also has a signi�cant drawback,
in that the central node is potentially a single-point-of-failure.

In the following diagram, we can see an example of star topology with an instance in Amsterdam replicating
to several global instances in Bangkok, Cape Town and Denver.

STAR TOPOLOGY USING MULTI-PUSH REPLICATION STAR TOPOLOGY USING PULL REPLICATION

AMSTERDAMAMSTERDAM

CAPE TOWN DENVERBANGKOK CAPE TOWN DENVERBANGKOK

PULLPUSH PULLPUSH PULLPUSH

Star topology is recommended when you have a main facility doing development (say, Amsterdam),
however additional development is managed at multiple remote sites (Bangkok, Cape Town, and Denver).
In this case, both push and pull replication could be used, each with its own set of advantages.

Amsterdam pushes to Bangkok, Cape Town
and Denver. (Note: all sites must have
Artifactory Enterprise)

Bangkok, Cape Town and Denver pull
replicate from Amsterdam. (Note: all sites
must have Artifactory Enterprise)

Event-based multi-push replication Event-based Pull replication

STAR TOPOLOGY

All rights reserved 2023© 18 JFrog Ltd. | www.jfrog.com

Once replication is con�gured we can see the replication status and schedules of all managed instances.

All rights reserved 2023 © 19 JFrog Ltd. | www.jfrog.com

SINGLE LOCAL REPOSITORY PUSHED BETWEEN TWO SITES

Bi-directional push
or pull replication

CIVERSION
CONTROL

LOCAL REPOSITORY

LOCAL REPOSITORY

CIVERSION
CONTROL

FULL MESH TOPOLOGY
Full mesh topology is recommended when development is more equally distributed between the di�erent
sites, however, the term is somewhat of a misnomer. A true full mesh topology implies that each side would
implement a complete bi-directional synchronization (whether by push or by pull), however this is usually
not considered best practice. What we are recommending is actually a star topology, but implemented per
project instead of having everything centralized. There are di�erent ways to do this as described in the
sections below.

If there are modules that are developed on multiple sites, each site may deploy them to a local repository,
and then the sites synchronize between them either using event-based push or pull replication.

While this solution is technically possible, pushing updates in both directions is very risky and poses a
signi�cant risk that data will be lost, especially if delete synchronization is enabled during the event-based
push replication. Consider if Amsterdam is updated with a set of artifacts. If Bangkok now runs its scheduled
synchronization process before Amsterdam manages to push over the update, Bangkok will delete those
�les from Amsterdam. This solution is therefore not recommended.

AMSTERDAM

BANGKOK

All rights reserved 2023 © 20 JFrog Ltd. | www.jfrog.com

SINGLE VIRTUAL REPOSITORY CONSISTING OF A
LOCAL AND REMOTE REPOSITORY
A better way to implement full mesh topology is to have each site manage a local and a remote repository.
Each site can only write to its own local repository, while the remote repository is populated by pull
replicating the local repository on the other site. In other words, Artifactory in Bangkok pull replicates from
the local repository in Amsterdam, to its own corresponding remote repository, and vice versa. This can be
done with one default deployment target which is the virtual repository that will point to the local
repository (‘local- amsterdam’ for Amsterdam and ‘local-bangkok’ for Bangkok) for deployment.

AMSTERDAM

BANGKOK

PUll

PUll

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

CI

CI

VERSION
CONTROL

VERSION
CONTROL

LOCAL
AMSTERDAM

LOCAL
BANGKOK

REMOTE
REPO

REMOTE
REPO

All rights reserved 2023 © 21 JFrog Ltd. | www.jfrog.com

Another alternative to implement full mesh topology is to have each site manage two local repositories.
Each site can only write to its own local repository, while the second one is populated by being push
replicated by Artifactory from the distant repository (which is local to the other site). In other words,
Artifactory push replicates from the local repository in Amsterdam, to the corresponding repository in
Bangkok, and vice versa. This can be done with one default deployment target which is the virtual
repository that will point to the local repository (‘local- amsterdam’ for Amsterdam and ‘local-bangkok’ for
Bangkok) for deployment.

This con�guration works well for continuous integration between geographically distant sites because it
minimizes the time taken for an artifact to become available, although since replication is not instant, there
is no guarantee that the same artifact will always be available at each site. For example, if source code is
updated simultaneously at both sites it is possible that each site could create a build that only contains its
own updates. The sites would eventually synchronize; however, each site may create a build that does not
match any build at the other site.

AMSTERDAM

BANGKOK

PUSH

PUSH

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

CI

CI

VERSION
CONTROL

VERSION
CONTROL

LOCAL
BANGKOK

AMSTERDAM
PUSHES TO

CORRESPONDING
LOCAL IN BANGKOK

LOCAL
AMSTERDAM

BANGKOK
PUSHES TO

CORRESPONDING
LOCAL IN

AMSTERDAM

ALL RIGHTS RESERVED 2023 © 22

SINGLE VIRTUAL REPOSITORY CONSISTING OF TWO
LOCAL REPOSITORIES

 JFROG LTD. | WWW.JFROG.COM

All rights reserved 2023 © 23 JFrog Ltd. | www.jfrog.com

Enterprise users can implement full mesh topology by having each site manage a single local repository and
multiple remote repositories (that represent the other sites’ local repositories). The con�guration is as
follows: Each site can only write to its own local repository, while the other remote repositories are
populated by pull replicating from local repository on the other sites. In the example diagram below: Local
repositories in the Artifactory instances in Bangkok, Cape Town and Denver are pull replicated to the
corresponding remote repositories in Amsterdam. Local repositories in Amsterdam, Cape Town and Denver
are pull replicated to the corresponding remote repositories in Bangkok. Local repositories in Amsterdam,
Bangkok, and Denver are pull replicated to the corresponding remote repositories in Cape Town. Local
repositories in Amsterdam, Bangkok, and Cape Town are pull replicated to the corresponding remote
repositories in Denver.

In this environment, a solid naming convention can be crucial for two reasons: �rst, it reduces confusion,
and second it allows for easier disaster recovery if a single node goes down. We recommend that at each
site, the local nodes be named something like:

“libs-release-amsterdam”
“libs-release-bangkok”
“libs-release-cape-town”
“libs-release-denver”

.

.

.

.

.

.

.

.

“libs-release-amsterdam-remote”
“libs-release-bangkok-remote”
“libs-release-cape-town-remote”
“libs-release-denver-remote”

The Amsterdam CI environment writes only to “libs-release-amsterdam”, the Bangkok CI environment writes
only to “libs-release- bangkok” etc. If the Amsterdam Artifactory fails, the Amsterdam CI environment can be
designed to fail-over to any other Artifactory in the mesh with minimal recon�guration.

In the following diagram, we can see a full mesh topology with local repositories in each site being pull
replicated by corresponding remote cache in other sites.

and at all the sites the remote nodes be named like:

SINGLE VIRTUAL REPOSITORY CONSISTING OF ONE LOCAL
AND MULTIPLE REMOTE REPOSITORIES (PULL REPLICATION)

AMSTERDAM

BANGKOK

CAPE TOWN

DENVER

A B C
Local Remote Remote Remote

CIVERSION
CONTROL

A C D
Local Remote Remote Remote

CIVERSION
CONTROL

A B D
Local Remote Remote Remote

CIVERSION
CONTROL

B C D
Local Remote Remote Remote

CIVERSION
CONTROL

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

All rights reserved 2023 © 24 JFrog Ltd. | www.jfrog.com

Enterprise users can implement full mesh topology by having each site manage multiple local repositories.
Each site can only write to its own local repository, while the other ones are populated by being push
replicated by Artifactory from the distant repository (which is local to the other site). In other words,
Artifactory multi-push replicates from the local repository in Amsterdam, to the corresponding repositories
in Bangkok, Cape Town and Denver, Artifactory in Bangkok multi-push replicates to Amsterdam, Cape Town
and Denver, Artifactory in Cape Town multi-push replicates to Amsterdam, Bangkok and Denver and
Artifactory in Denver multi-push replicates to Amsterdam, Bangkok and Cape Town.

In this environment too, a solid naming convention can be crucial for two reasons: �rst, it reduces confusion,
and second it allows for easier disaster recovery if a single node goes down. We recommend that at all the
sites, the nodes be named something like:

“libs-release-amsterdam”
“libs-release-bangkok”
“libs-release-cape-town”
“libs-release-denver”

In this architecture, Artifactory considers all the repositories to be local, even though several of them are
actually replicated duplicates of remote repositories. Then, the Amsterdam CI environment writes only to
“libs-release-amsterdam”, the Bangkok CI environment writes only to “libs-release- bangkok” etc. All other CI
environments should treat the respective repositories which have been push replicated to them by others,
as read-only and their user accounts should not have write access, to prevent replication-based issues. This
also means that if the Amsterdam Artifactory fails, the Amsterdam CI environment can be designed to
fail-over to any other Artifactory in the mesh with minimal recon�guration.

In the following diagram, we can see a full mesh topology with an instance in Amsterdam replicating
repository `local-amsterdam’ to corresponding repositories in instances in Bangkok, Cape Town and Denver.
In the same fashion, Bangkok, Cape Town and Denver replicate their own local repository to the
corresponding one in all the other instances.

SINGLE VIRTUAL REPOSITORY CONSISTING OF MULTIPLE
LOCAL REPOSITORIES (MULTI-PUSH REPLICATION)

.

.

.

.

All rights reserved 2023 © 25 JFrog Ltd. | www.jfrog.com

AMSTERDAM

BANGKOK

CAPE TOWN

DENVER

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

VIRTUAL REPOSITORY

A B CCIVERSION
CONTROL

A C DCIVERSION
CONTROL

A B DCIVERSION
CONTROL

B C DCIVERSION
CONTROL

Amsterdam pushes to corresponding local (A) in
Bangkok, Cape town and Denver

Bangkok pushes to corresponding (B) local in
Amsterdam, Cape town and Denver

Cape town pushes to corresponding (C) local in
Amsterdam, Bangkok and Denver

Denver pushes to corresponding (D) local in
Amsterdam, Bangkok and Cape town

All rights reserved 2023 © 26 JFrog Ltd. | www.jfrog.com

The screenshot below shows how the full mesh topology looks in JFrog Mission Control.

All rights reserved 2023 © 27 JFrog Ltd. | www.jfrog.com

Replication In
One Direction

Only

Source Code
Synchronized By

Github

CIVERSION
CONTROL

LOCAL REPOSITORY

PUSH

LOCAL REPOSITORY

CIVERSION
CONTROL

One Direction Pull Replication
Only (Event/scheduled/

On-demand Proxy)

Source Code
Synchronized By

Github

CIVERSION
CONTROL

LOCAL REPOSITORY

PULL

LOCAL REPOSITORY

CIVERSION
CONTROL

AMSTERDAM

BANGKOK

AMSTERDAM

BANGKOK

SINGLE LOCAL SITE WITH ARTIFACTS REPLICATED

This is the most conservative con�guration, and makes the most sense if you don’t want to have redundant
CI servers, so only one site actually builds artifacts for distribution.

This con�guration provides the strongest guarantee that artifacts are synchronized between the two sites,
however this comes at the cost of adding load and build time to the CI server at the near end (Amsterdam in
the above example).

All rights reserved 2023 © 28 JFrog Ltd. | www.jfrog.com

Another topology which is an extension of the full mesh topology is a Geo Synchronized topology. This is a
situation where several Artifactory instances are connected to a Geolocation Routing. Using event based
push or pull replication we can have multiple instances in di�erent geographical locations serving di�erent
global teams while each instance contains the same artifacts at any given time by replicating immediately
when changes occur.

In this use case the desired outcome is to have the exact same con�guration (repository names, users,
groups, permission targets etc.) in all of the instances connected to the routing server so that users can
deploy and resolve from the same repositories without the need to change con�guration in their build tool
according to the server they are being routing to (this can be done for DR purposes as well as for dividing a
load in multiple locations to di�erent instances). From an end user perspective, interactive or build server,
everything is behind the scenes and they just connect to Artifactory through a single URL.

GEO SYNCHRONIZED TOPOLOGY

All rights reserved 2023 © 29 JFrog Ltd. | www.jfrog.com

The following table provides recommendations for con�gurations depending on your setup and other
limitations you may have to address.

SETUP/GOAL RECOMMENDATION

 RECOMMENDED CONFIGURATIONS

One central CI server
You have only one CI server in a central location where
you build artifacts, and you want to replicate those to
satellite locations.

Multiple CI servers
You have several sites, and each has its own CI server.
Each site builds a subset of all the artifacts needed by
all the other sites.

Replicating over limited bandwidth
You are a satellite site without a CI server. You need to
replicate a repository from the main site, but you have
limited bandwidth.

Replicating with limited data transfer
You need to replicate a repository, but want to limit
the amount of data transferred.

Use a Star Topology. Whether you use multi-push or
pull replication depends on whether you have an
enterprise license, and which advantages are most
important to you.

Use a Full Mesh topology with event based pull
replication so that all data is available even before
synchronization completes. Alternatively, event based
push replication can be implemented when network
topology requires.

You should invoke a pull replication during times of
low tra�c.

Use on-demand proxy by de�ning a remote repository
to proxy the repository on the far side that you need to
replicate. It is recommended NOT to synchronize
deletions.

Replicating but limiting data storage
You want to replicate a repository at another site,
however, you also want to limit the amount of data
stored at your site.

Use on-demand proxy by de�ning a remote repository
to proxy the repository on the far side that you need to
replicate. In addition, you should let Artifactory clean
up artifacts that are no longer in use. The best way to
do it is to set the Unused Artifacts Cleanup Period �eld
to a non- zero value to modify and control the amount
of storage that is consumed by caches.

All rights reserved 2023 © 30 JFrog Ltd. | www.jfrog.com

All rights reserved 2023 © 31 JFrog Ltd. | www.jfrog.com

There are several ways to set up your distributed network to support development at multiple
geographically distant sites. The optimal setup depends on the number of sites, availability of CI servers at
each site and di�erent optimizations for data storage or data transfer that each organization may prefer.

This white paper has shown how Artifactory supports distributed development by supporting a variety of
network topologies.

With advanced features of remote repositories, virtual repositories, federated repositories, push / multi-push
replication and pull / event-based pull replication, Artifactory allows organizations to customize their
multisite topology and support their distributed development environment by replicating data between
sites.

For questions on how to con�gure your own multisite setup, please contact us at support@jfrog.com.

 CONCLUSION

