
Best Practices for

Artifactory Backups
and Disaster Recovery

December 2018

INTRODUCTION

How Artifactory stores your binaries and what’s so special about it?

1. BACKING UP SMALL ARTIFACTORY INSTANCES

2. BACKING UP LARGE ARTIFACTORY INSTANCES

ADDITIONAL WAYS TO KEEP YOUR BINARIES SAFE

Periodic Database Snapshots

Filestore Sharding

Disaster Recovery (DR)

Manually setting up DR

DR with JFrog Mission Control

Moving data in a way that won’t clog your network

Configuring Disaster Recovery

Initializing DR

Synchronizing Repositories

Simple migration with downtime

CONCLUSION

3

4

6

7

8

9

11

3

7

7

7

8

8

9

9

3

6

Right at the heart of the DevOps pipeline, JFrog Artifactory is the central hub for all of your

binary needs. In production, every minute is valuable. Whether it’s to deploy your latest

packages or to cache openly available packages, it is vital that you have all of your binaries

available at all times. The challenge is that there is no such thing as an indestructible

computer or a flawless piece of software, and this is why we must make sure to have a backup

plan, literally.

This white paper describes several methods for tackling these concerns, in hopes that one will

work best for your organization.

introduction

How Artifactory stores your binaries and what’s so special about it?

The classic way to protect your binaries is by using recurring backups of your files, and having

them available for use in case anything goes down. Artifactory has specific ways to backup

your binaries so that you may import them back into a new instance and keep all your

references. As described in the following section, the way Artifactory stores your binaries is a

bit different than your usual storage, so that has to be taken into consideration for these

tasks.

Artifactory stores both binaries and their metadata. The metadata is stored in a Derby

database (by default), and includes information such as the checksum, repository, path,

created time, and so on. The actual binaries are, however, stored separately. Depending on

how you , the files will be stored in one or multiple locations, using configure your filestore

their as the file name and the first two characters of the SHA1 value as SHA1 checksum value

the folder name. For example, with a default Artifactory installation you’ll find the following

structure in the $ArtifactoryHome/data/filestore.

3

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore
https://www.jfrog.com/confluence/display/RTF/Checksum-Based+Storage

1. Backing Up Small Artifactory Instances

Artifactory offers a deduplication feature that will save you countless GBs or even TBs of space,

using checksum based storage.

Deduplication

By referencing binaries by their checksum,

pretty much like Git or Dropbox do, and not

relying on filesystem paths same-content files

are never stored more than once. This is one of

the few ways you can optimize the storage of

binaries.

Checksum-based Storage

Learn More >>

Artifactory was built from the ground up for

optimal management of binaries with the

capability to support any package format that

emerged in the software development domain.

One of the key features enabling these

characteristics is Checksum-Based Storage.

cron expressions.

Once a system backup is created, it will be located

in the $ArtifactoryHome/backup/<backup_key>

directory, with a timestamp.

The Artifactory System Import can then be used

to recreate an instance entirely if there is a

failure.

and even manual periodic backups using

System backups are a simple, built-in way of

backing up your Artifactory instances, directly

configured from within the Artifactory UI.

User administrators can set daily, weekly,

4

This is why it’s important to backup your

filestore, as well as the database or

metadata of these files. Depending on

the size of your instance there are

different approaches.

The following sections will describe the

different backup approaches and ways

to keep your binaries safe.

https://www.jfrog.com/confluence/display/RTF/Checksum-Based+Storage
https://www.jfrog.com/confluence/display/RTF/Managing+Backups
http://www.cronmaker.com/
https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-Import
https://jfrog.com/article/checksum-based-storage/

Additional advanced backup options include:

Ÿ Verify disc space - check that there is enough space before performing backup

(using the Exclude Content = true option). system export via REST API

Ÿ Incremental backups - only backing up what the previous backup missed, saving time

Ÿ Include/Exclude specific repositories

Ÿ Retention period - time period to keep backups, if they are not incremental

Ÿ Exclude builds and new repositories from backup

This type of Artifactory backup will create a new set of repository folders, that contain each

artifact stored alongside with its metadata. This complete duplicate of data can take a toll on

your storage if you are backing up large instances. You can mitigate this storage cost by

backing up your filestore separately and performing a skeleton export of the database

reaches 500GB-1TB of storage, or if you go over 1 Million Artifacts in your instance.

Ultimately, it is recommended to switch to a different backup method if your instance

5

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ExportSystem

Periodic Database Snapshots

It’s important to backup your filestore, as well as the database Taking periodic snapshots of

your external database will complete your coverage. Without the database backup, the

filestore on its own is a just a folder with files that are named after their checksum, making

them impossible to identify in a timely manner (plus, you'd have to rename them all). When

it's time to restore, you’ll need to use the latest available snapshot. Copying the filestore and

taking periodic snapshots of your external database should be done around the same time to

avoid references of non-existent binaries or other empty values. However, taking snapshots of

the external database should be done first before copying the filestore.

Completing a full system export with the content excluded is also a good way to backup data.

This is the equivalent of a DB dump, where a collection of xml files that represent your

binaries and repository locations are exported. It is similar to a system backup but without the

binaries.

6

2. Backing Up Large Artifactory Instances

For instances with a large set of data, alternative routes are suggested. This is because

large backups can take a significant amount of time to complete, which may even overlap

your cron duration and cause missed backup intervals. The purpose of a backup is to make

data available even in case of hardware failure, or perhaps get it ready for migration to a

different version or instance. Spending too much time on backups is counterproductive,

especially when you really need the backup!

Additional Ways to Keep Your Binaries Safe
There are additional methods that can help you avoid losing data, as well as any downtime

before an instance is recovered. These include, redundancy (storing multiple copies in

different locations) and disaster recovery (restoring an instance when necessary).

Filestore Sharding
Artifactory offers a that lets you manage your binaries in a sharded Sharding Binary Provider

filestore. A sharded filestore is one that is implemented on a number of physical mounts (M),

which store binary objects with redundancy (R), where R <= M. This binary provider is not

independent and will always be used as part of a more complex template chain of providers.

Sharding the filestores offers reasonable scalability, however be cautious of creating too many

shards as additional shards do cause a performance impact (we generally don't recommend

exceeding 10 shards at this time, although this may change in the future). The difference is

that the process is initially more manual, which means that when the underlying storage

approaches depletion, an additional mount will need to be added. The system will then invoke

balancing mechanisms to regenerate the filestore redundancy according to the configuration

parameters.

DR provides you with a solution to easily recover from any event that may cause irreversible

damage and loss of data, as well as a graceful solution that enables taking Artifactory down

for any other reason such as hardware maintenance on the server machine.

Manually setting up DR

Disaster recovery can be manually set up, however this would be time consuming and

complex. Under the hood, this would include:

Ÿ Matching up local repositories on your master instance with corresponding

repositories on the target instance.

Ÿ Setting up all replication relationships to move your critical data from the Master

to the Data.

Keeping track of the millions of artifacts and making sure their metadata is correctly

replicated will take up a considerable amount of time. There can't be any errors here

as in the event that Disaster Recovery needs to kick in, no time can be wasted on

"empty" artifacts.

7

Disaster Recovery (DR)

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-ShardingBinaryProvider

DR with JFrog Mission Control

Disaster recovery is designed to continue providing service as quickly as possible if a whole

Artifactory installation goes down (for example, all servers in an HA installation go down due

to an electrical malfunction in the site). In this case, requests can be rerouted to the Target

instance, and, while this is not automatic, it is achieved with a single click of a button in

Mission Control.

Don't confuse setting up Artifactory in a High Availability configuration with setting up Disaster

Recovery. A high availability configuration uses two or more redundant Artifactory servers to

ensure users continue to get service if one or more of the Artifactory servers goes down

(whether due to some hardware fault, maintenance, or any other reason) as long as at least

one of the servers is operational. Once HA is set up, service continues automatically with no

intervention required by the administrator.

Moving data in a way that won’t clog your network

Synchronizing network is resource intensive. For this reason, Mission Control does not move

data all at once, but rather individually, with time intervals.

Configuring Disaster Recovery

JFrog Mission Control lets you configure complete system replication

between Master instances and corresponding Target instances.

The Master instance in this case is your production instance, and the

Target instance will work as a replication target for DR.

The Master and Target pairs you configure are displayed in the

Manage module under DR Configuration.

8

>> Learn more

about replication

and using

Artifactory to

manage binaries

across multi-site

topologies.

The following illustrates a Full Mesh Topology configuration in Mission Control:

https://www.jfrog.com/confluence/display/MC/Disaster+Recovery#DisasterRecovery-SettingUpDisasterRecovery
https://jfrog.com/whitepaper/replication-using-artifactory-to-manage-binaries-across-multi-site-topologies/

To avoid lengthy and resource intensive synchronization the relevant department in your

organization may manually sync between Master and Target instances outside of both Mission

Control and Artifactory before you initialize the DR process. This is called an external sync.

Initializing DR

During what we we call the Init step, Mission Control establishes the replication relationships

between all local repositories on the Master instance and the corresponding repositories on

the Target instance as well as backing up security settings and various configuration files from

the Master instance to Mission Control. These are later pushed to the Target instance, though

no data transfer occurs at this step, it will instead happen on the Synchronize step.

Synchronizing Repositories

Once all repositories on your Target instance are synchronized with your Master instance,

your system is DR protected. This means you can instantly invoke failover from your Master to

your Target instance so that your users may transparently continue to get service from

Artifactory.

During the synchronize step, Mission Control begins invoking replication from the Master

instance to the Target instance so that each local repository on the Target instance is

synchronized with the corresponding repository on the Master instance.

Now you're protected!

Simple migration with downtime

In some cases you will simply want to set up a copy of your instance, which can be done using

backups. This method can also help you keep a “manual” DR instance that you periodically

clone to or replicate to from your active cluster.

The benefits of executing a migration is that it's one of the simplest types of upgrades or

instance cloning, since it only entails setting up a new instance to migrate data into, and

requires no data in the new instance.

9

There are two methods that offer little to no downtime during this migration. The first method

has a short downtime and requires the following steps:

Old server: Copy the $ARTIFACTORY_HOME/data/filestore folder to the new server's

filestore folder

Old server: Shut down <downtime step>

New server: Perform full system import (Do NOT select the Exclude Content option).

Disable Admin -> Advanced -> Maintenance -> Garbage collection on both servers

Old server: Take server off the network to block new requests

Old server: Perform full system export with the "Exclude Content" option selected (no

other options selected)

Old Server: rsync from $ARTIFACTORY_HOME/data/filestore folder to the new server's

filestore folder one last time

New server: Turn on network traffic / switch DNS to new server.

New Server: Enable Garbage Collection again

The second method is more complicated than the first, but has almost no downtime. It

requires the following steps:

Old server: Perform full system export with the "Exclude Content" option selected (no

other options selected)

Old Server: Set up all local repositories to replicate to the repositories on the new server

with the "sync deletes" option turned off.

Disable Admin -> Advanced -> Maintenance -> Garbage Collection on both servers

Old server: Copy the $ARTIFACTORY_HOME/data/filestore folder to the new server's

filestore folder

New server: Perform full system import (Do NOT select the Exclude Content option).

New server: Turn on network traffic / switch DNS to new server.

Old server: Execute all replication jobs

Old server: Shut down

New Server: Enable Garbage Collection again

Ultimately, the migration method you choose will depend on your preference, tolerance for

downtime and even industry. For example, financial industries tend to lean towards filestore

sharding for security purposes. The main difference between the two methods is the

replication part that will allow you to move over any artifacts that were deployed during the

export/import process.

10

1.

9.

8.

7.

6.

5.

4.

3.

2.

1.

9.

8.

7.

6.

5.

4.

3.

2.

As described in this whitepaper, there are multiple ways to protect your binaries. Depending

on your setup, industry requirements, repository size and backup frequency (small

incremental or disaster recovery), you can choose the right fit for your organization.

All of the methods described have a common goal in mind: minimize downtime in case of an

unexpected event that can impact development and release time. As well as maximize

developer productivity.

Conclusion

11

	Table Of Content
	Introduction
	How Artifactory stores your binaries and what’s so special about it?

	Backing Up Small Artifactory Instances
	Backing Up Large Artifactory Instances
	Filestore Backup
	Amazon S3 Versioning Service
	Periodic Database Snapshots

	Additional Ways to Keep Your Bin
	Filestore Sharding
	Disaster Recovery (DR)
	Manually setting up DR
	DR with JFrog Mission Control
	Moving data in a way that won’t clog your network

	Configuring Disaster Recovery

	Initializing DR

	Synchronizing Repositories
	Simple migration with downtime

	Conclusion

