
November 2021 | www.jfrog.comCopyright © 2021JFrog Ltd.

Best Practices for
Structuring and Naming

Artifactory Repositories

Table of Contents
EXECUTIVE SUMMARY 2
INTRODUCTION 4

1. Using a Repository Manager 4

2. Creating Naming Conventions 5
NAMING STRUCTURE BASICS 6

1. Team or Product 6

2. Technology 7
3. Maturity 7

4. Locator 8
 REPOSITORY TYPES 9

1. Local Repositories 10

2. Remote Repositories 11
3. Virtual Repositories 12

 REPOSITORY ORGANIZATION AND MANAGEMENT 14
1. Security 14

2. Performance 14
3. Operability 15

RECOMMENDED CONFIGURATIONS .. 16
CONCLUSION 18

Executive Summary

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 2

Devising the right repository naming conventions for your organization is essential. Creating the
right repository structures, for any product development, plays a vital role in promoting a coherent
product scaling strategy. It not only reduces overhead of random multiple repository creations,
but helps teams discern the purpose of using a repository manager.

Using Artifactory as your repository manager, combines the power of a robust universal binary
repository that hosts all your different kind of binaries in one place, with enterprise-grade features
that fully integrate into your software development lifecycle.

Software development involves open-ended and evolving processes. And with the various teams
that are involved in product development, maintaining a repository structure with utmost precision
becomes one of the imperative tasks of the process. The challenge is that there are no hardcoded
guidelines to follow for naming conventions or creating a repository structure.

Note: This structure produces the following JFrog recommended repository naming structure
that should be used throughout your organization:
<team/projectKey>-<technology>-<maturity>-<locator>.

Additional guidelines apply to the four different Artifactory repository types, that include: local,
remote, virtual and distribution. Local repository naming conventions are composed of two use
 cases. The first is where the stored artifacts are your own, and the second is when they are third
party. Remote repositories are either part of an Artifactory topology and their naming conventions
should align with those defined for your local repositories, or they are central repositories making
them external and giving them slightly different naming conventions. Virtual repositories are
topology agnostic so they lack locators. And last but not least, distribution repositories support
multiple technology types and generally end with “-dist”.

JFrog recommends a four-part naming structure that includes:
1. A project, product or team name as the primary identifier of the project
2. The technology, tool or package type being used.
3. The package maturity level, such as the development, staging and release stages.
4. The locator, the physical topology of your artifacts.

Note: Organizations that utilize JFrog Projects have an extra benefit - the Project Key will be
automatically added to the naming structure.

“There are 2 hard problems in computer science:
cache invalidation, naming things, and off-by-1 errors.”

Leon Bambrick, Computer Programmer

https://jfrog.com/artifactory/

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 3

When organizing your repositories in Artifactory, it is best practice to manage security permissions
at the repository level. This security factor will determine the different repositories you should
manage, depending on the different teams working in your organization.

Performance concerns vary according to technology, and cleanup policies should be implemented
in order to ensure the highest repository efficiency. Additionally, operability considerations should
be applied, both at the repository structure, according to business value that depends on the
way your organization is using Artifactory, and the structure of your teams. Although fewer
repositories are preferred by administrators, sometimes it is better to create separate repositories,
with different read/write/delete permissions, in order to prevent teams from interfering with
each other’s work.

All of these considerations, covered in this white paper will enable you to scale your Artifactory
across global topologies and provide the DevOps support needed for large-scale enterprise JFrog
Artifactory installations.

When setting up your naming conventions for your repositories, the three main categories to
consider are: security, performance and operability.

Introduction

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 4

JFrog Artifactory is a Universal Binary Repository Manager that was created to speed up
development cycles. This means that it’s not only a repository, but also a highly capable manager
that aids in organizing multiple repositories to ease the distributed software development process.

When defining guidelines and conventions for your repositories, flexibility is preferred over rigid
rules. Creating elastic guidelines offers Artifactory administrators enough room to tailor rules
on a need basis.

Naming conventions and repository structures go hand in hand. It is always a tough call to
choose an appropriate name and decide if you need a single repository or multiple repositories.
It is important that the organization structure you pick be one that works with how your
development, test, deployment and distribution flow works in your organization. The naming
convention and organization structure represented here is based largely on a number of fairly
common flows, but may not be suitable for all organizations. Hopefully, however, you can use
the considerations in organization and naming laid out here to adapt it to your own naming
convention.

Using a Repository Manager

https://jfrog.com/whitepaper/devops-8-reasons-for-devops-to-use-a-binary-repository-manager/

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 5

Before we dive into the details, lets review three overarching concerns:

The first is defining repository names that generate usable URLs. For example, since Artifactory
is case sensitive, it’s a good idea to use lower case letters. More importantly, avoid using characters
that require URL encoding in your environments, for example the ‘_’ character. This will make
things easier for end-consumers of your Artifactory instance by simplifying their URLs, as well
as on administrators who have to manage reverse proxies and load balancers.

A second concern should be familiar to all coders: self documenting code! Ensure that your
repository names are self-documenting wherever possible. Although there is a description field,
it makes things much easier when the repository name is clear.
 A third concern is based on the Artifactory UI. The most relevant piece of information that
identifies your repositories should be first. By doing this, after filter options are applied, the
alphabetization will place similar repositories next to one another in the Artifactory tree browser
based on the significance of the components of the name.

A fourth concern is based on certain restrictions that are implied regardless of
how you devise your conventions. For example, there are a some special characters
('/', '\\', ':', '|', '?', '*', '"', ‘’’, '<', '>', ‘+’, space) that are outright forbidden. The name can be up to 64
characters, and 58 for remote repositories. There are also some reserved and not recommended
names, such as ‘repo’ and ‘trash’. Appending the word ‘-cache’ is also considered reserved because
it is largely used for automatically created cache for remote repositories.

Creating Naming Conventions

This white paper talks about
repository naming conventions
and management. For additional
information on artifact naming
conventions, refer to
Repository Layouts.

Organizations often deal with multiple projects,
technologies, life cycles, and products, that
yield in multiple repositories. And whenever you
have more than one of something, you need to
name it. As developers, over the past several
decades we have learned that a name can either
clarify what you are doing or confuse it

https://www.jfrog.com/confluence/display/JFROG/Repository+Layouts

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 6

Naming Structure Basics
JFrog recommends a four-part naming structure, preferably in the following order.

Four Part Naming Convention

<team>-<tech>-<maturity>-<locator>

Project Name or
Source:
artifactory
swampup
tiger
jcenter
apache-tomcat

Technology/
Package Type:
mvn
rpm
centos
rhel
docker

Maturity or
Process:
external
whitelist
dev
preprod
prod

Topology Locator:
local
amsterdam
boston
capetown
denver

1. Team or Product

Choosing the level of granularity for the project/team/product name part of the naming
convention is one of the most difficult parts of developing a naming convention. This will be
further discussed later on in this white paper, in the repository organization section. However,
due to virtual repositories, this is also something that can be changed fairly easily later on if
need be, so don’t worry too much, instead pick something easily understood and consistent
and see whether it works for you.

For example: tiger

A projectKey or team name is the primary identifier of the project. You can choose to
tailor the abbreviation based on your corporate naming conventions. With JFrog Projects a
Project Key is automatically used instead of using the entire product name. On the other
hand, the repository can be created outside of the Project and allocated to it later on, hence
the Project Key is not mandatory and some prefer to use team or product name. The main
idea is to choose a name that is relevant and easily understood by your team.

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 7

2. Technology

3. Maturity

Technology largely refers to the type of tool or package. Artifactory is a universal binary
repository manager, and its core capability enables it to store various types of packages that
cover technologies such as Maven, NuGet, and Docker. Each repository should hold one type
of binary files.

So why do we do this? Typically this is done when the artifact changes its control state.
In traditional development models this may represent actual teams who own the software
in different stages of its life cycle. You may have a “sandbox”, while the artifact is being tested
by developers at their desks, and “dev” or “snapshot” for builds that are occurring out of the
CI system in the initial build-on-commit. The artifact will then move to a “qa”, “preprod” or
“staging” repository, and finally to a “release” or “prod” repository. When an artifact retires,
 or when it triggers certain regulatory requirements for retention, the artifact and possibly all
its dependencies can move to “archive”.

In general, any repository type may have any desired binary as far as the repository type
responds to a single tool or in some cases family of tools through its APIs and indices.
Therefore, when you select a repository type, you are reflecting what tool you plan to
use to retrieve the artifact. This impacts the type of index Artifactory will calculate.
If you are not using any tool beyond get/put rest API commands, you may want to
consider generic repositories and avoid the overhead of index calculation altogether.

Advanced Users

Building on our example: tiger-docker

Including the type of tool or package name in the naming convention helps developers identify
 artifacts, making it easier to browse them based on their type. In most cases this will exactly
reflect the package type selected at repository creation, but you can choose to be more specific.
For example, if your generic repository stores videos, you may choose the word “video” as the
technology type. Other examples are: using ‘centos’ instead of ‘rpm’ or ‘rhel’, and ‘ubuntu’
instead of ‘deb’.

Maturity refers to the package maturity level, such as the development, staging and release stages.
Artifact promotion can be done in many different ways within Artifactory. From simple property
tagging for lesser events (e.g. “passed test X”), to larger quality gates the artifact has passed
through. For the purposes of this discussion we are interested in promotion, where an artifact
is moved or copied from one repository to another.

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 8

What about in DevOps? According to DevOps principles artifacts should not be passed off to
new teams, rather they should be owned by the same team throughout their lifecycle. From
an automation perspective, the control state is not about the teams within the company,
rather based on the different environments which have different permission models to ensure
artifacts are not deployed prematurely.

While much of this white paper is focused on naming conventions, it’s really about the
organizationof your artifacts. There is no greater consideration in this than the concept of
artifact maturity. The following diagram illustrates a typical promotion concept. The artifact
progressesfrom one DevOps stage to another if quality requirements are met:

Continuing to build on our example: tiger-docker-release

4. Locator
Locator essentially refers to the physical topology of your artifacts. Each repository in a topology
must be unique. Local repositories that are truly local, meaning their content is managed/uploaded
locally, should end in “-local”. Local and remote repositories that are the targets of replication activity
for content managed elsewhere should end in a designator for the other service.

CI
SERVER

INTEGRATION SYSTEM TESTING STAGING PRODUCTION

For example, “boston” can be used for artifacts managed in a datacenter in Boston.
For conformity, remote repositories that access external locations should end in “-remote”.
This is often omitted, particularly for the main central repositories, on the assumption
that users are familiar with “jcenter” and “npmjs” as central repositories by name, but such
assumptions can cause confusion.

Completing our example with the following repository name:

<team>-<tech>-<maturity>-<locator>

tiger-docker-release-boston

https://jfrog.com/devops-tools/what-is-devops/
https://jfrog.com/whitepaper/replication-using-artifactory-to-manage-binaries-across-multi-site-topologies/

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 9

Artifactory hosts four repository types: Local, Remote
and Virtual. Local and remote repositories are true
physical repositories, while a virtual repository is actually
an aggregation of them used to create controlled
domains for search and resolution of artifacts.

This section provides guidelines on how to apply the
naming structure outlined above, specifically
for each repository type.

Any part of the naming convention can be optional when it is not relevant, and the general
concept of the four-part naming convention can be adapted for additional circumstances
not addressed in the initial conventions.

Repository Types

JFrog Distribution enables you to
speed up deployments and
concurrent downloads at scale
throughout your SDLC: from CI, to
CD, through device management -
spanning remote sites, hybrid
infrastructure, clouds, edges,
embedded devices, and IoT fleets.
Learn more >

https://www.jfrog.com/confluence/display/JFROG/Repository+Management
https://jfrog.com/distribution/

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 10

A critical secondary use case for local repositories is when they are used to store third party
artifacts. This usually covers either a scenario where for whatever reason you can’t remote the
source of the third party artifact (either because of an air-gap or just because it doesn’t have http
access), or you’re implementing a white-list approach. In both of these cases, in general, technology
remains the same, but the team name should be something that indicates its source location; for
example, tomcat or centos. Because typically there is still a topology for these, locator also works
the same as it is for other local repositories. Maturity, however, is now not something like
release/dev, but instead reflects the trust level of the artifact. So it might be “upload” or “whitelist”.
For example, “tomcat-mvn-upload-local”. If you are using local repositories to snapshot a remote
in a state, this might be a date. For example,”centos7-rpm-oct2017-local”.

Local Repositories
Local repositories are physical, locally-
managed repositories into which you
can deploy artifacts. Typically, these are
used to deploy internal and external
releases as well as development builds,
but they can also be used to store
binaries that are not widely available on
public repositories such as 3rd party
commercial components. Using local
repositories, all of your internal resources
can be made available from a single
access point across your organization
from one common URL.
Learn more >

1. Local Repositories

There are two basic use cases for local repositories:

The first use case is when you are referring to
artifacts that relate to your own organization
artifacts. In this case, locator is purely based
on topological considerations, and is also fairly
 self-explanatory. On the other hand, team and
maturity get a little more complex, and basically
depend on the number of repositories needed.
Team depends on business logic and permissions.
Maturity depends on the gates and artifact
ownership/disposition. If an Artifactory instance
is focused on deployment, rather than generation,
there is merit in considering that maturity is
actually more important than technology.
However, conforming to a uniform naming
convention takes precedence.

Using the four-part naming structure described in the previous section, we can address all required
considerations for a local repository naming convention, including: Project/Organization (business
unit or product), Technology, Maturity, and Locator. As discussed, the order represents the
significance. The JFrog recommendation is: <team>-<tech>-<maturity>-<locator>, although
other orders may apply in some use cases.

https://www.jfrog.com/confluence/display/JFROG/Local+Repositories

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 11

Remote Repositories
A remote repository serves as
a caching proxy for a repository
managed at a remote site such as
ConanCenter. Artifacts are stored
and updated in remote repositories
according to various configuration
parameters that control the caching
and proxying behavior.
Learn more >

JCenter and Central Repositories

2. Remote Repositories

Remote repositories fit into
two categories:

Those that are part of an Artifactory topology,
in which case their naming convention should
align with that of local repositories and the
four relevant parts, with the locator indicating
the source repository being remoted.

Those that are central repositories.
These are the external repositories your
artifacts are being pulled from, and can
be referred to by their source id, such as
ConanCenter. For strict conformance, you
could consider the following model,
<central_name>-<technology>-remote,
where the default Artifactory naming
behavior uses the source. Generally, this
helps to easily identify artifacts.

ConanCenter is an additional central
repository for C/C++ Conan packages.

https://www.jfrog.com/confluence/display/JFROG/Remote+Repositories
https://docs.conan.io/en/latest/index.html
https://conan.io/center/

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 12

Virtual Repositories
A virtual repository encapsulates any number of local and remote repositories, and
represents them as a unified repository accessed from a single URL. It gives you a way to
manage which repositories are accessed by developers since you have the freedom
to mix, match and modify the actual repositories included within the virtual repository.
You can also optimize artifact resolution by defining the underlying repository order so
that Artifactory will first look through local repositories, then remote repository caches,
and only then Artifactory will go through the network and request the artifact directly from
the remote resource. For the developer it’s simple. Just request the package, and Artifactory
will safely and optimally access it according to your organization policies.
Learn more >

3. Virtual Repositories
There are two types of virtual repository names.

Most virtual repositories do not contain a <locator>, and are made up of
<team>-<tech>-<maturity>. In many cases, users do not need to know about topological
implementation details. In general, its best practice that all consumption and writes are done
through virtual repositories, as opposed to local/remote repositories. This is so that as many
implementation details as possible can be omitted, letting the users work with a single,
well-known URL. Additionally, while for local repositories maturity is strictly about artifact stages,
for virtual repositories you may consider the audience more. For example, virtual repositories
containing “-dev” in their name indicate the virtual repositories that the developers should be
using. Finally, a common use case is for an entire company to use a virtual repository that
aggregates all repositories of a specific technology, such as Docker, for both resolution and
read permissions. While strict conformance with the naming convention would require the
team name to be ‘all’ or something similar (e.g. all-mvn-release), it is more common to simply
omit the team name and have repository name such as docker-stage.

The other major type of virtual repository name is aliasing for conformance, for example, with
the requirements of an external tool or legacy automation. Virtual repositories allow you to
make an alias of a single or multiple repositories. This may be a conformant name, but can
also be highly useful if you need to accommodate a legacy build process or a particular tool to
use a specific name. For example, for homebrew, it is useful to have a virtual repository called
 “bottles”. In general these names are not subject to conformance with a standard practice,
although where possible try to avoid outright violations where a virtual repository seems to
conform but does not. An example would be calling a virtual repository “ci-files-local” due to
requirements of automation needing this repository name; this is distinctly not recommended
if it can be avoided.

https://jfrog.com/knowledge-base/the-basics-a-beginners-guide-to-docker/
https://www.jfrog.com/confluence/display/JFROG/Repository+Management#ConfiguringRepositories-VirtualRepositories

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 13

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 14

1. Security
Artifactory permission targets allow for managing permissions via include/exclude patterns at
an individual folder or even file level. In general, the best practice here is to manage permissions
at the repository level. For repositories with highly structured organization, like Maven and RPM,
it is possible to achieve a great deal of granularity at the folder level. However, this can still be
too complex for administrators to keep track of (although effective permissions analysis can help).
This is particularly true of READ permissions, although the finer granularity for those technologies
 where it works may be used for write permissions.

At a minimum, you should have separate repositories within the same technology and maturity
level whenever you have teams that are not collaborating or sharing data, and thus do not
have/need read permissions on each other's software. You may also choose to provide different
repositories based on write permissions, and assume they are aggregated in virtual repositories
for read. This choice of write-based repositories is especially crucial in repository types which
aren’t well divided by namespacing, such as the default NuGet behavior or an npm repository
that isn’t scoped.

2. Performance
Another major concern is performance. This varies a bit by technology, but for any given technology
there tends to be a maximum number of packages that make sense in that repository. In Maven
this tends to be hundreds of thousands and driven more by UI considerations. Whereas in
Yum/Debian this tends to be more in the tens of thousands, and driven more by the overall
approach to calculating indexes and the size of the resulting index files, and their impact on
client performance.

The other side of this are cleanup policies. An artifactory server with absolutely no cleanup
policies in place will grow in storage usage very fast, and in general most of it will not be things
you actually need to store. Mechanisms for implementing cleanup policies are a different discussion.
Some can be found here. Based on the business requirements of the organization, different

Now that we’ve established the basic repository naming structure, let’s review the different
considerations you need to take when organizing your repositories in JFrog Artifactory.
In essence, repository organization boils down to three things: security, performance and
operability. And mostly, these considerations will determine what granularity you set “team” at,
and to a lesser extent what granularity you calculate maturity levels.

Repository Organization and Management

https://www.jfrog.com/confluence/display/JFROG/Permissions#ManagingPermissions-ExaminingPermissions
https://jfrog.com/blog/aql-cli-a-match-made-in-heaven/

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 15

3. Operability
When it gets to administering artifact repositories for specific teams in specific environments,
other basic operability considerations apply. In general, these policies will want to be handled
at the repository level, and so this will be a driving determination in choosing your repository
structure.

The first is a fairly simple one: determining business value. If you are managing an Artifactory
that spans multiple large projects and business units within the company, in addition to the
considerations above, you will want to be able to determine how these different projects/units
are using the Artifactory service. This may be for explicit chargebacks, or merely to track what
units are resulting in what sorts of costs. As soon as you want to track usage for a given unit of
organization in the company separately from other organizations, it should have its own repositories,
and be broken down in the naming conventions accordingly for ease of identification.

Additionally, at a minimum, you must have separate repositories once you go beyond the bounds
where the business can successfully coordinate naming conventions and directory structure
organizations. That is to say if a team is too large to successfully manage something like group
ids/naming conventions for artifacts without a horribly bureaucratic process, it is better to just
give them separate repositories, and there is always a scale where this limitation exists. In general
write permissions, and even more so delete permissions, should be reasonably specific to
prevent teams from interfering with each other's work. Delete permissions in general should
only be provided to a very small group, outside of policy-based reapers (see the discussion
on cleanup policies in the performance section above)

Taking all this into consideration, typically administrators prefer fewer repositories. Even though
the more heavily automated your repository management process is, the less it really matters.
For example, in a strong DevOps environment you could end up in a situation where every single
test could be viewed as a promotion. While it might make sense to use the promotion API for
each test, it probably does not make sense to have a repository for each one of dozens of tests,
but rather to track this via properties, and reserve separate repositories for major control points.

projects may have different policies. A primary driver for this tends to be maturity, discussed
above. For example, a dev-sandbox docker registry may have a policy which states that any Docker
tag which hasn’t been downloaded in the last two weeks should be deleted. On the other hand,
a regulated industry may have a regulatory requirement that any object which has been in the
regulated production environment must be retained for ten years. A solid promotion model
between these stages of the lifecycle to different repositories is critical. But these policies are
also probably not the same for all applications being developed. While an application for processing
stock trades in production will fall under regulation, that same company’s tool for managing what
to order for lunch can probably be discarded shortly after its “production” life cycle is complete,
but does need to be maintained while it is actually being used.

https://jfrog.com/integration/docker-registry/
https://www.jfrog.com/confluence/display/JFROG/Artifactory+REST+API#ArtifactoryRESTAPI-BuildPromotion
https://www.jfrog.com/confluence/display/JFROG/Property+Sets

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 16

1. Local Repositories

The following tables summarize the best practice naming convention with examples for each
repository type.

Recommended Conventions

Name Part

<projectKey/
team>

<team>

<maturity>

<locator>

The content type. This is typically the package type, such as: mvn, rpm, docker.
It may also be more specific, such as centos or ubuntu.

Based on the physical location/artifactory service ID. The default is ‘local’ for a
repository that is actually written to, but in case of multi-push replication it may
be the site of the source of pushed events.

In general you should not write to a repository that doesn’t have the ‘local’
designator except through replication.

Recommendation

The maturity level within a process, either the SDLC process or a whitelisting/
approval process for third party artifacts.
For example, a series such as:
 scratch (For developers sharing from their systems e.g. docker)
 dev (For CI builds)
 qa (Promoted builds)
 preprod (Promoted builds)
 prod (Promoted builds for use)
 archive (Builds retained for regulatory purposes)
 For third party libraries it might be values such as:
 upload
 whitelist
 jan2018 (typically used when snapshotting a remote repository)

Examples:
 rtfact-docker-dev-local
(where rtfact is a Project Key
for Artifactory)
 tigerteam-docker-release-local

<projectKey/team>-<tech>-<maturity>-<locator>

This is the hardest part of the naming convention. It is based on the
granularity you want to manage permissions/performance/operability concerns.

It may also be a product name, or refer to a source for third
party libraries.

In the case of JFrog Projects, it is a unique identifier for Project repositories.
The Projects Key is added automatically as a prefix to resources created
within the Project.

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 17

2. Remote Repositories

Repository
Use Case

Part of an
Artifactory

topology

Central
Repository

For remoting another artifactory server, go with the same naming convention
as local repositories, based on the repository it is remoting.
 <locator> in this case should be the identifier of the remote artifactory.

<centralname>-remote

“-remote” is optional, but helpful to avoid confusion with virtual
repository naming conventions.
 i.e. jcenter-remote or just ‘jcenter’

Recommendation

Examples:
 tiger-mvn-release-boston
 rtfact-remote

3. Virtual Repositories

Name Part

<projectKey/team>

<tech>

A group that shares read permissions.

If you are using virtual write to control writes, then you may control
this at the write permission level.

The package type.

<maturity>

This part may be omitted. However, it is often used as part of the write-control
feature and/or specifically for production.

Unlike <maturity> in local repositories, it is much more likely to be controlled
from a deployment model perspective than a CI perspective.

Recommendation

Examples:
 rtfact-docker-dev
 tiger-docker-prod

<projectKey/team>-<tech>-<maturity>

All rights reserved 2021 © JFrog Ltd. JFrog Ltd. | www.jfrog.com 18

Conclusion
Organizing repositories and picking a naming convention is one of the first and most
significant decisions a JFrog Artifactory administrator needs to make. While good use of
virtual repositories can allow changes later, it is best to pick a naming convention up front.

This white paper has presented various considerations for a repository organization and
naming convention that should help you answer the following question: “how many
repositories do I need?”. It provided a four-part convention,
<projectKey/team>-<tech>-<maturity>-<locator>, which can be used as a basic
best-practice guideline for your naming and organization structure. Using this suggested
convention, most organizational questions become fairly clear.

Although team granularity can be a bit of a challenge, this granularity is usually decided
according to security, performance and operability concerns. While you may have to adjust
granularity over time, a good naming convention combined with using virtual repositories can
make this a relatively painless process for your team.. Additionally, you can use virtual
repository aliases to avoid breaking builds as you move forward.

The conventions described in this white paper will allow you to scale your Artifactory across
global topologies. It will provide DevOps support large-scale enterprise installations that
serve thousands of developers across many different teams and projects.

	EXECUTIVE SUMMARY
	INTRODUCTION
	NAMING STRUCTURE BASICS
	REPOSITORY TYPES
	REPOSITORY ORGANIZATION AND MANAGEMENT
	RECOMMENDED CONFIGURATIONS
	CONCLUSION

