
Jenkins is an open source automation tool written in Java with
plugins built for Continuous Integration purposes.

Continuous integration is a practice of automating the integration
of code changes from multiple developers onto a single software
project. It allows the Developers to frequently merge code changes
into a central repository where builds test and run.

WHAT IS JENKINS AND WHY DO WE NEED
A CONTINUOUS INTEGRATION SYSTEM?

JENKINS PIPELINES
Runs the entire software development workflow as
code, Instead of creating several jobs for each stage
of software development, you can now run the entire
workflow as one code.
Learn more >

FREESTYLE
Provides maximum flexibility, with a general-purpose
build job. It can be used for any type of project.
Learn more >

MULTICONFIGURATION
Provides the ability to run the same build job on
different environments, usually we will use it for
testing an application on different environments.
Learn more >

FOLDER
Creates a container that stores nested items in it. It
is useful for grouping things together.
Learn more >

MAVEN PROJECT
Builds a Maven project. Jenkins takes advantage of
your POM files and drastically reduces the
configuration.
Learn more >

GITHUB ORGANIZATION
Scans a GitHub organization (or user account) for all
repositories matching some defined markers.
Learn more >

Jenkins is distributed as WAR files, native packages,
installers, and Docker images. There are different
installation types, depending on your OS system.

Use the following commands to install Jenkins with
Docker:

$ docker pull jenkins/jenkins

$ docker run -p 8080:8080 -p 50000:50000
--name jenkins jenkins/jenkins:lts

Once installed, you’ll be able to access the Jenkins
server on port 8080 and create your first build.

Naming the container “--name jenkins” allows us to
easily stop / restart it with the following command:

$ docker stop/restart command

HOW TO INSTALL JENKINS

JENKINS PIPELINE CONCEPTS

BASIC JENKINS PIPELINE EXAMPLE JENKINS PLUGINS

1. Job DSL

2. Job Generator Plugin

3. Performance Plugin

4. GitHub/GitLab Pull Request Builder

5. JIRA Plugin

JENKINS ARTIFACTORY PLUGIN

The Jenkins Artifactory plugin is an
open source project that allows your
build jobs to deploy artifacts and
resolve dependencies to and from
JFrog Artifactory. The build info is
created and linked to the build job.

The plugin includes a vast collection
of features, including a rich pipeline
API library and release management
for Maven and Gradle builds with
Staging and Promotion.

Refer to this Github repository for
some Artifactory & Jenkins DSL and
pipelines examples.

Artifactory places no limitations and
lets you set up any number of Docker
registries, through the use of local,
remote and virtual Docker repositories.

JENKINS JOB TYPES

When using the Jenkins Pipeline you can run the entire workflow as a single code, instead of running
multiple jobs for different stages of software development.

The code is stored in the Jenkins file and it is written using the Groovy DLS programming language.
It is based on the following two syntaxes: Scripted Pipeline and Declarative Pipeline.

In the Scripted Pipeline, the code is written using the Jenkins UI instance and enclosed within the node
block such as the following.

 node {
 scripted pipeline code
 }

For the declarative pipeline, the code is enclosed within the pipeline block and it is written locally
within a file.

 Pipeline {
 declarative pipeline code
 }

node {
state ('SCM checkout') {
//checkout from your SCM (Source control
Management)
//for ex: Git Checkout
}
State('Build') {
//compile code
//install dependencies
//perform Unit Test, Integration Test
}
state ('Test') {
//resolve test server dependencies
//perform UAT
}
Stage ('deploy') {
//deploy code to prod server
//solve dependency issues
}

The Jenkins capabilities can easily be extended by
installing the Jenkins plugins inside the Jenkins
Dashboard --> Manage jenkins --> manage
plugins.

Top 5 Jenkins plugins for DevOps in 2021:

https://www.jenkins.io/doc/book/installing/
https://www.jenkins.io/doc/book/installing/
https://hub.docker.com/r/jenkins/jenkins
https://hub.docker.com/r/jenkins/jenkins
https://www.jenkins.io/doc/book/pipeline/
https://github.com/jenkinsci/job-dsl-plugin
https://wiki.jenkins.io/display/JENKINS/Job+Generator+Plugin
https://wiki.jenkins.io/display/JENKINS/Performance+Plugin
https://github.com/timols/jenkins-gitlab-merge-request-builder-plugin
https://wiki.jenkins.io/display/JENKINS/JIRA+Plugin
https://wiki.jenkins.io/display/JENKINS/JIRA+Plugin
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plug-in
https://github.com/jfrog/jenkins-artifactory-plugin
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Build+Integration
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plugin+-+Release+Management
https://www.jfrog.com/confluence/display/JFROG/Jenkins+Artifactory+Plugin+-+Release+Management
https://github.com/jfrog/project-examples/tree/master/jenkins-examples
https://www.jenkins.io/pipeline/getting-started-pipelines/
https://www.jenkins.io/pipeline/getting-started-pipelines/
https://www.jenkins.io/doc/pipeline/steps/folder-properties/
https://www.jenkins.io/doc/book/using/referencing-another-project-by-name/#maven-projects
https://www.jenkins.io/doc/book/blueocean/creating-pipelines/#choose-your-github-account-organization-and-repository

