
Expanding threat landscape jeopardizes
software integrity

Software Supply Chain
State of the Union 2025

Copyright 2025 JFrog Ltd.

Table of Contents
Introduction� 1

Executive Brief� 2

What’s in Your Software Supply Chain?� 3
Number of programming languages used in development organizations� 4

New packages per year per package type� 5

Top package technologies in use by organizations � 6

Popular libraries� 7

Pace at which new OSS packages are being injected into an organization� 8

Key takeaways� 9

The Accelerating Risk in Your Software Supply Chain� 10
Vulnerabilities found in a given technology or package type� 11

Total removed and deprecated packages� 12

Most common types of vulnerabilities� 13

Common vulnerability impacts for high profile CVEs 2024� 14

Severity of the vulnerabilities being introduced into your software supply chain� 15

Some malicious packages are worse than others� 19

Other sources of risk hiding in your code� 20
Misconfiguarations and mistakes — the impact of human error 	 20

State of leaked secrets in binary artifacts	 21

How severe can a secret leak be?	 23

Key takeaways� 24

How Organizations are Applying Security Efforts Today� 25
Sourcing restrictions� 26

Scanning, scanning, scanning� 28

Establishing visibility and control across application pipelines� 31

How much time security efforts are costing your organization� 34

Key takeaways� 36

The Next Frontier of Risk: AI and Machine Learning Development� 37
Trends in AI adoption and DevSecOps� 38

Usage, governance, and scanning of ML model artifacts� 39

Key takeaways� 41

Methodology� 42
JFrog Platform usage data� 42

Analysis by the JFrog Security Research team� 43

Commissioned survey results� 43

About the JFrog Platform� 44

https://jfrog.com/ 12025 JFrog Ltd. All rights reserved.

Introduction

Managing and securing the entire software supply chain is foundational for

delivering trusted software releases. However, this is often easier said than

done. As a software security-focused company with a dedicated security

research organization and 15+ years supporting development and security

teams, JFrog understands the threats and challenges today’s organizations

face. In a post-AI world, these challenges are only accelerating, leaving most

DevSecOps teams wondering: how do we keep up with all the change?

This report combines JFrog usage data from millions of users, CVE analysis

by the JFrog Security Research team, and commissioned third-party polling

data from 1,400 Security, Development, and Ops professionals to answer

that all-important question. The resulting analysis provides context into the

broad software supply chain and development landscape, reveals where

persistent and new risks reside, and explores what it takes to secure your

software supply chain in 2025.

We hope you find value in this report and welcome any feedback, which

can be shared with us at data_report@jfrog.com.

mailto:data_report@jfrog.com

https://jfrog.com/ 22025 JFrog Ltd. All rights reserved.

Executive Brief
The software supply chain is evolving at an unprecedented
rate, creating the potential to expose organizations to new
threats at an untenable pace. When it comes to mitigating
risk across the supply chain, “more” is not necessarily

the best approach. The old adage of “work smarter, not
harder” by simplifying toolchains and processes will best
serve organizations who want to move fast, embrace new
technologies, and dominate the competition.

Open-source ecosystem growth shows little sign of slowing
down and organizations that are eager to innovate are
moving fast to take advantage of the latest technologies.

•	 Two-thirds of organizations (64%) report using 7 or more
programming languages. 44% are using 10 or more. This
is an increase YoY, up from 53% and 31%, respectively.

•	 Public repositories continue to grow. Of note, Docker
Hub added 1.9M images in 2024 and Hugging Face
added 1M.

•	 The typical organization brings in 458 new packages
a year. That nets out to 38 new packages a month,
on average, and varies according to the number of
developers.

Organizations have adopted varying levels of security
frameworks and are using even more security tools, but some
essential best practices are getting missed along the way.

•	 71% of respondents indicate their organization allows
developers to download packages directly from the internet.

•	 73% of organizations use 7 or more security solutions.
49% are using 10 or more. This is up from 47% and 33%
reported last year.

•	 Less than half of respondents (43%) indicate their
organizations are scanning at the code and binary level.

•	 40% of respondents lack full visibility into the provenance
of software running in production.

While understanding the potential impact of a CVE
continues to be a complex endeavor, it is just the tip of the
risk iceberg.

•	 A massive backlog at NVD did not stop new
vulnerabilities from being discovered. Over 33,000 new
CVEs were reported in 2024, an increase of 27% YoY.

•	 The JFrog Security Research team detected 25,229
exposed secrets/tokens in public registries (up 64%
YoY), of which 6,790 were active.

•	 In a deep analysis of 183 notable CVEs, the JFrog
Security Research team found 63 to never be
exploitable in JFrog Cloud customers’ scanned
applications.

There are more options than ever for teams to bring AI
services to production, but this presents new concerns for
organizations to address.

•	 Over a million new models and datasets were added
to Hugging Face this year, but with that came a 6.5x
increase in malicious models.

•	 Teams are turning to hosted models (64%), but nearly
half of organizations are also self-hosting models in
some capacity – both proprietary and open source.

•	 37% of organizations currently rely on manual efforts
to curate and maintain a list of approved models in an
effort to govern model artifact usage.

Your Software Supply Chain —
bigger, faster, more complicated More risk, less clarity

In addressing security risk,
don’t skip the basics

AI adoption is shifting into
fifth gear

https://jfrog.com/ 32025 JFrog Ltd. All rights reserved.

What’s in Your
Software Supply Chain?

The modern software supply chain is global and expansive, integrating
multiple technologies and sources, with millions of new packages and
libraries added to the most popular tech ecosystems annually. Software
development organizations are now leveraging an unprecedented
number of languages and their corresponding package ecosystems.
While legacy technologies remain widely-utilized, innovation across
established and emerging open-source ecosystems presents
opportunities and risks that will be explored further in this report.

https://jfrog.com/ 42025 JFrog Ltd. All rights reserved.

1-3 languages

4-9 languages

10+ languages

Fewer than
2,000 employees

2,000-4,999
employees

5,000-9,999
employees

More than
10,000 employees

1-3 4-9 10+

Organization size

All organizations

 48%

 51%

29%

 35%

 40%

 36%

 60%

 34%

1-3 4-9 10+

 12%

 13%

11%

 31%

 16% 40% 44%

+8% +6% -11%

-18% -76% +40%

+65% +17% -76%

3+ languages

7+ languages

10+ languages

2023 2024
0

10

20

30

40

50

60

70

80

90

100

56
64

44
36

+14%

-18%

<7 languages

7+ languages

%
 R

es
po

ns
es

% Responses
0 10 20 30 40 50 60 70 80 90

Organization size

Fewer than
2,000 employees

2,000-4,999
employees

5,000-9,999
employees

More than
10,000 employees

Number of programming languages used in development organizations

Figure 1.1. How many programming languages do you use in your software

development organization? (Commissioned survey, 2024)

Nearly two-thirds of technology
professionals (64%) report that their
organizations are using 7 or more
programming languages. Last year,
just over half of respondents (56%)
reported the same. This increase is
reflective of the overall increase in
complexity we are seeing across the
software supply chain.

As organization size increases,
we tend to see more languages in
use – an expected trend. However,
once the company size hits 10k
or more employees, the reported
number of languages in use actually
decreases. This dip likely represents
organizations past an inflection
point where they realize they should

start to take a more proactive
approach in managing development
and standardize using certain
technologies to limit sprawl. It is also
possible that larger organizations
are maintaining established legacy
applications with fewer new projects
necessitating the usage of additional
technology ecosystems.

Figure 1.2 Figure 1.3

https://jfrog.com/ 52025 JFrog Ltd. All rights reserved.

Maven

Docker Hub

GoLang

PyPI

npm

Hugging Face

Debian

Composer

Nuget

RubyGems

Alpine

Conan

 1,947,951
1,516,558

270,310
10,396

1,189,304
1,389,350

433,627
362,295

295,514
318,305

258,140
317,457

104,471
103,112

79,988
70,216

58,662
59,794

135,133
62,959

79,018
74,825

63,057
77,842

106,520
25,211
20,443
13,628

28,416
27,280
25,256
29,224

17,576
5,435
5,556
7,024

4,204
7,259
7,880
3,367

1,096
102
163
191

1,003,606
345,279

79,470
19,021

+191%

+323%

+223%

New packages per year per package type

Figure 2. Number of new packages per year, displayed by

package type (JFrog Catalog database, 2024)

By far, Docker Hub continues to be the most contributed-
to ecosystem based on JFrog Catalog data examining public
registries. While the pace of growth slowed somewhat in 2024
when compared to the explosive growth in 2023, there were
still an incredible ~2M new packages added in 2024. Part of this
growth from 2023 and into 2024, and perhaps the slowing pace,
is due to the malicious campaign discovered by the JFrog Security
Research team, which we will touch on later in this report.

Package manager Number of new packages

2024

2023

 2022

 2021

After a preliminary review, the JFrog Security Research
team did not find malicious activity in connection to the
4x spike in Debian, indicating that this growth is likely due
to other reasons.

This year’s research also includes an analysis of RubyGems,
Debian, Alpine, Conan, and Hugging Face. The exponential growth
we see with Hugging Face illustrates the widespread and rapidly
increasing interest in AI/ML, both in terms of development and the
incorporation of AI/ML capabilities into business applications. We
expect to see the growth of the ecosystem continue into this year
and beyond.

2024 YoY

https://jfrog.com/blog/attacks-on-docker-with-millions-of-malicious-repositories-spread-malware-and-phishing-scams/

https://jfrog.com/ 62025 JFrog Ltd. All rights reserved.

Package Type Requests*
Number of

Repositories
Artifacts

Maven 33.52% 104,955 2,567,881,564

npm 30.45% 48,549 674,010,130

Docker 15.45% 112,366 2,264,459,098

YUM 2.68% 14,669 20,785,724

PyPI 2.68% 22,352 66,838,230

Helm 1.61% 26,125 13,231,209

Nuget 1.45% 28,497 131,164,087

Debian 1.35% 8,184 8,066,185

Conan 1.33% 3,420 143,404,846

Gradle 0.99% 9,073 102,198,342

RubyGems 0.93% 3,736 46,728,889

Go 0.75% 9,034 16,511,299

OCI 0.47% 862 8,662,480

Cargo 0.13% 1,261 526,851

Sbt 0.12% 2,239 14,908,497

Helm OCI 0.07% 1,633 201,440

Ivy 0.06% 2,283 31,786,069

Composer 0.05% 2,413 614,957

Terraform 0.03% 3,566 675,684

Opkg 0.02% 529 33,812,836

Conda 0.02% 2,168 1,538,832

P2 0.02% 316 1,010,616

Pub 0.01% 363 166,878

Swift 0.01% 524 1,345,299

Alpine 0.01% 1,550 111,231

Cocoapods <0.01% 1,400 2,973,045

Cran <0.01% 2,403 816,170

VCS <0.01% 273 1,692

Chef <0.01% 1,530 150,462

Vagrant <0.01% 680 7,326

Terraform Backend <0.01% 2,307 395,004

Bower <0.01% 985 44,161

Ansible <0.01% 107 4,470

Puppet <0.01% 1,530 17,758

Hugging Face <0.01% 551 12,638

Top package technologies in use by organizations

Figure 3. Technologies used, plus action counts, number of repos, and total

size of artifacts stored for each (JFrog database, 2024)

This year, we took an end-of-year (Q4) snapshot to get a more
accurate look into the most popular technologies among the
35+ technology types that JFrog supports. While we continue to
see the prevalence of well-established technology ecosystems,
including npm, Docker, and Maven, there were some notable
jumps in popularity for YUM and Cargo.

Over the past few years, we have watched the popularity
of Cargo grow steadily, particularly as government entities
push for more memory safe development. It remains to be
seen whether the popularity of Rust will plateau or reach the
widespread usage and adoption levels of more established
languages like Java.

It is also worth noting the amount of OCI and Helm OCI usage.
JFrog introduced dedicated repositories for OCI in early 2024
and many of our customers are already taking advantage of
it. This indicates a growing preference for an open standard
for containers and other technology ecosystems, and is why
we expanded our Terraform repositories to natively support
OpenTofu.

The use of common technologies differs by industry:

•	 Automotive and IoT companies leverage Maven
(back-end apps), npm (front-end apps), Conan
(embedded devices), Docker, PyPI (for AI/ML), and
often bundle many of these together into generic
packages (tar/zip images).

•	 AI/ML and Robotics companies leverage PyPI, ML
models pulled from public repositories like Hugging
Face and Tensorflow, and store these models in
containers or generic packages (tar/zips). They may
also adopt native repositories like Hugging Face or
JFrog’s Machine Learning Repository* for their models.

•	 Insurance, Financial, and Retail institutions leverage
a combination of technologies like Maven, npm, and
Docker, and with the increase in AI/ML, are starting
to leverage PyPI and ML models to provide more
enhanced offerings to remain competitive.

*% of total requests from 57 Billion requests in Q4

*JFrog’s Machine Learning Repository was introduced in
 January 2025 and not included in the data of this report.

https://thenewstack.io/feds-critical-software-must-drop-c-c-by-2026-or-face-risk/
https://thenewstack.io/feds-critical-software-must-drop-c-c-by-2026-or-face-risk/
https://jfrog.com/blog/mlops-your-way-with-the-jfrog-platform/

https://jfrog.com/ 72025 JFrog Ltd. All rights reserved.

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Popular libraries

Figure 4. Top 20 downloaded packages for Docker, Maven, PyPI, npm into JFrog Cloud (SaaS)

(JFrog database, 2024)

Many public registries offer download
metrics for the packages contained
within them, but these metrics can be
misleading for various reasons, including
the fact that they are impacted by things
such as clients fetching the package
whenever a build is run. Instead, our
research deduces the libraries that are
actually used based on what is being
requested into environments in JFrog
SaaS, which is used by thousands of
customer accounts.

For Docker, it is no surprise that the top
20 images include the most popular
operating systems and top development
languages, presumably used as parent
images. It is encouraging to see that all
but one are either Docker Official Images
or contributed by a Verified Publisher,
indicating that care is taken to ensure
these images are regularly maintained.
Notably, the official Docker hello-
world image is among this top group,
possibly indicating a healthy collection
of demos, proof-of-concepts, and

developers learning to use Docker as this
containerization becomes ubiquitous in
modern software delivery.

In regard to Maven, PyPI and npm
packages, there were no surprises in the
top 20 used by organizations. That said,
it is unclear whether these packages are
being pulled in directly, chosen explicitly
by software developers, or getting pulled
in as dependencies or even transitive
dependencies (aka dependencies of
dependencies).

library/alpine org.slf4j:slf4j-api urllib3 @types/node

library/node commons-io:cozmons-io requests semver

library/python commons-codec:commons-codec certifi minimatch

library/nginx org.ow2.asm:asm charset-normalizer glob

library/redis com.fasterxml.jackson.core:jackson-core setuptools electron-to-chromium

library/busybox com.google.guava:guava idna lru-cache

library/postgres com.fasterxml.jackson.core:jackson-databind packaging caniuse-lite

library/ubuntu com.fasterxml.jackson. core:jackson-annotations typing-extensions acorn

library/openjdk org.apache.commons:commons-compress wheel debug

library/debian org.apache.commons:commons-lang3 PyYAML @babel/parser

grafana/grafana org.codehaus.plexus:plexus-utils python-dateutil strip-ansi

library/golang junit:junit numpy browserslist

library/hello-world org.apache.httpcomponents:httpcore click @babel/types

library/maven org.apache.httpcomponents:httpclient MarkupSafe tslib

library/docker com.google.code.findbugs:jsr305 pytz resolve

library/eclipse-temurin com.google.errorprone:error_prone_annotations cryptography commander

curlimages/curl commons-logging:commons-logging cffi qs

library/mongo net.bytebuddy:byte-buddy importlib-metadata @babel/code-frame

library/centos org.objenesis:objenesis zipp @babel/generator

library/amazoncorretto org.apache.maven:maven-artifact attrs chalk

Docker Maven PyPI npm

https://jfrog.com/ 82025 JFrog Ltd. All rights reserved.

0%

2%

4%

6%

8%

9%

0.1 1 10 100 1000 10,000 100,000

Monthly packages created (log scale)

%
 o

f A
ct

iv
e

Te
na

nt
s

28,839
Packages

For example, Apache Commons Compress
holds a seat at #9 in the popularity data. If
you take a closer look at this library, you will
find that it has direct dependencies on Apache
Commons IO, Apache Commons Codec, ASM,
and Apache Commons Lang – seats 2, 3, 4, and
10 respectively. This highlights the criticality
of maintaining a current inventory of software

artifacts included in an application, often in
the form of an SBOM, in order to evaluate
each individual ingredient and to have a better
understanding of the blast radius should
a specific component become vulnerable,
compromised, or simply go missing in your
software supply chain.

Pace at which new OSS packages are being injected
into an organization

In 2024, organizations using JFrog Cloud, JFrog’s
cloud-native SaaS offering, brought a total of
over seven million new packages into their
software supply chain.

For the average organization, that is around
2,000 packages throughout the year – however,
this number is buoyed by a few very heavy
users. The largest single organization brought
in 346,000 new packages over the course of the
year, while the median organization brought in
a much more manageable 231 packages.

If you exclude organizations that did not
bring in any packages, the median number of
packages jumps to 458, or 38 new packages
per month. Based on the data, this number
is likely the best representation for a typical
organization. Even a pace of just over one
new package per day can create significant
challenges for organizations in regards to
how they consider and manage the security,
operational risk, and license compliance of
what’s being brought into their environments.

Figure 5. Distribution of new packages created monthly for active tenants in 2024
(JFrog database, 2024)

https://jfrog.com/ 92025 JFrog Ltd. All rights reserved.

We are witnessing an exponential growth in the
availability of AI/ML components, with more community
and corporate players getting involved by contributing
to the ecosystem (e.g. Nvidia releasing NIM and NVLM).
Organizations are moving quickly to begin adding
AI services into their products, made evident by the
500+ Hugging Face repositories created by JFrog users
today. It is important to have well-defined policies and
strategies around how you consume and secure open-
source models and datasets – a topic we will explore
further on in this report.

With two-thirds of organizations using 7 or more languages
and nearly half using 10 or more, the risk for organizations
exponentially increases since they now need to ensure
that they have a consistent pipeline for multiple different
languages, multiple different teams, and multiple different
sources of threats. Each ecosystem has its own distinct
vulnerabilities, malicious actors, and unique structures that
must be taken into account during development to ensure
the applications delivered to production are secure.

The U.S. government and other global political entities
have been pushing for the use of safer development
languages and frameworks. JFrog is now also starting
to see the rise in use of Rust/Cargo in our own data,
indicating that organizations may be rearchitecting
applications or starting new projects from a more
security-first footing. Additionally, the popularity of
OCI can likely be explained, in part, by organizations’
growing concerns about favored open-source
technologies going private, business source, or now
requiring a license.

Key takeaways

AI explosion

Risk times a factor of 10

Safeguarding applications and their
development is top of mind

Fast moving organizations are bringing in one or
more new packages and versions a day, necessitating
automated and improved processes for ensuring
the security of these components brought into their
software supply chain. As organizations continually
look to improve velocity and empower developers
and security teams to find novel solutions to business
challenges, the pace of packages coming into
organizations should only continue to rise.

A package a day? Keep attackers at bay

https://venturebeat.com/ai/nvidia-just-dropped-a-bombshell-its-new-ai-model-is-open-massive-and-ready-to-rival-gpt-4/

https://jfrog.com/ 102025 JFrog Ltd. All rights reserved.

The Accelerating Risk in
Your Software Supply Chain

Organizations are in a race against bad actors, and must contend
with a collection of key factors, which show no signs of slowing down:

CVEs

Secrets exposures Misconfigurations /
human error

Malicious packages

Overall, analysis shows that the tools Developers and Security
professionals currently use are helping in some cases and
hurting in others. For example, AI code assistants, if not used
appropriately, can have a potentially negative impact, particularly
in poorly or improperly configured functions.

Open source licensing risk
Operational risks
(poorly managed packages, EoL, etc.)

Any YoY comparisons of Common
Vulnerability Scoring System (CVSS)
scores and Common Weakness
Enumeration (CWE) information
presented in this section will be skewed
this year due to the months-long
period when the National Vulnerability
Database (NVD) was unable to analyze
and assign properties to newly
discovered Common Vulnerabilities and
Exposures (CVEs), and the subsequent
backlog that was created.

This NVD backlog is a tale of caution,
highlighting an ever-persistent issue
in our industry. As the number of
libraries, and therefore CVEs, continues
to grow, organizations need to consider
the best way to manage this increased
risk in a sustainable way. Further, with
the current U.S. politics at play, the
integrity and future viability of NVD and
the National Institute of Standards and
Technology (NIST) is not guaranteed.

https://jfrog.com/blog/analyzing-common-vulnerabilities-introduced-by-code-generative-ai/

https://jfrog.com/ 112025 JFrog Ltd. All rights reserved.

Ecosystem CVEs with Severity Score Unranked CVEs

Total CVEs

High CVEs %
(Count)

Critical CVEs %
(Counts)

Low, Medium CVEs %
(Counts)

3,635

5,461

4,813

4,690

2,962

415

407

615

523

453

399

380

 107

 93

 86

 6,616

 5,464

 4,817

 4,694

3,366

 914

 902

 622

526

486

 410

382

107

 93

86

 2,981

 3

 404

499

495

 7

 3

33

11

2

0

0

0

3.1%

4.7%

2.8%

8.9%

5.7%

15.3%

7.5%

10.8%

13.5%

15.3%

24.3%

6.5%

7.0%

 33.9% (1,232)

 1.2% (66)

 80.9% (3,895)

 8.2% (385)

 36.0% (1,065)

 48.9% (203)

 46.9% (191)

 39.7% (244)

 28.1% (147)

 35.5% (161)

 34.1% (136)

 38.4% (146)

52.3% (56)

 34.4% (32)

 25.6% (22)

63% (2,289)

98.8% (5,393)

14.4% (694)

91.4% (4287)

61.2% (1813)

42.2% (175)

47.4% (193)

45.0 (277)

64.4% (337)

53.6% (243)

52.4% (209)

46.3% (176)

23.4% (25)

59.1% (55)

67.4% (58)

Debian

Ubuntu

Suse

Red Hat

Alpine

Wolfi

Amazon

PyPI

Composer

Golang

npm

Maven

Conan

Nuget

RubyGems

(114)

0% (2)

(224)

(84)

(23)

(23)

(94)

(39)

(49)

(54)

(58)

(26)

(6)

(6)

0.4%
(18)

 4

4

CVEs with Severity Score

Low, Medium CVEs

High CVEs

Critical CVEs

Ranked CVEs

Unranked CVEs

Total CVEs

Other CVEs

High CVEs

Critical CVEs

Figure 6.1. Number of discovered CVEs per package type in 2024

Vulnerabilities found in a given technology or package type

In 2024, security researchers around
the world disclosed nearly 33,000 new
CVEs, a 27% increase from 2023, which
continues the pattern of annual growth

in CVEs discovered. While this is not
surprising given the ever-increasing
number of new open-source packages,
the pace of CVE growth (27% YoY) is

surpassing the growth rate of packages
(24.5% YoY), which is an indicator that
should be taken seriously.

The first trend worth noting is the
high growth of Debian CVEs YoY.
An increase in Debian CVEs is not
surprising given the 4x growth rate
in packages contributed to the
ecosystem in 2024. Fortunately, there
are not a lot of critical and high CVE
risks in the 2024 Debian CVEs.

Similar to 2023 data, Maven, npm,

PyPI and Conan (a new addition
this year) represent the highest
percentage of critical CVEs, even as
the total number of CVEs decreased
for Maven and npm YoY. If we look at
an end-of-year snapshot of the entire
database, however, the persistent risk
present highlights the significant level
of risk in npm, Maven, and PyPI to a
somewhat lesser extent.

Figure 6.2. % Critical, High CVEs in popular
ecosystems as of EoY 2024

npm Maven PyPI

22.9%

41.3%

18.3%

37.1%

15.9%

37.7%

35.8%
44.6% 46.4%

https://jfrog.com/ 122025 JFrog Ltd. All rights reserved.

Total removed and deprecated packages

Packages are not only added to technology
ecosystems, but are sometimes deleted as
well. The most stand-out piece of data from
this set is the number of deleted Composer
packages in 2024 vs. 2023. A manual review
by the JFrog Security Research team found
the following possible explanations:

•	 Most deleted packages have their GitHub
source code repository as ‘not available’,
meaning they were deleted by the author
or made private.

•	 In one instance discovered, the deleted
package was only renamed, so it could
be that `packagist` marks the renaming
event as ‘deleted’.

•	 Some packages are deleted and marked
as ‘abandoned’, although it is unclear what
the criteria for an abandoned package is.

•	 It appears as though `packagist` likely ran
a new automation in 2024 that deleted
packages with invalid GitHub repositories.

2023

11,861

2024

13,752

16% increase

npm

Alpine

Our data sources vary in their reporting
of deleted packages; some provide
this information while others do not.
For certain ecosystems, we parse all
available data and compare it over
time, but this method does not account
for packages deleted before our first

data collection. In other cases, we
receive periodic updates that include
information since our last run, and
only some ecosystems report deletions
during these updates. Thus, we do not
always have complete information on
deleted packages.

2023
*

2024

32,928

Composer

2023

1,259

2024

12,987

929% increase

Debian

2023
*

2024

70,062

RubyGems

2023

7

2024
*

NuGet

2023

26

2024

26

* No data collected for the year
No change

Figure 7. Total removed and deprecated packages (JFrog database, 2024)

https://jfrog.com/ 132025 JFrog Ltd. All rights reserved.

Figure 8. Popular vulnerabilities that were disclosed in 2024 in comparison to 2023, 2022, and 2021

79: Improper Neutralization of
Input During WebPage Generation

787: Out-of-bounds Write

89: Improper Neutralization of
Special Elements used in an SQL
Command

125: Out-of-bounds Read

416: Use After Free

22: Improper Limitation of a
Pathname to a Restricted Directory

78: Improper Neutralization of Special
Elements used in an OS Command

352: Cross-Site Request Forgery

120: Buffer Copy without
Checking Size of Input

476: NULL Pointer Dereference

434: Unrestricted Upload of
File with Dangerous Type

287: Improper Authentication
362: Concurrent Execution using
Shared Resource with Improper
Synchronization ('Race Condition')

667: Improper Locking

77: Improper Neutralization of
Special Elements used in a
Command

863: Incorrect Authorization

862: Missing Authorization

190: Integer Overflow or
Wraparound

20: Improper Input Validation

119: Improper Restriction of Operations
within the Bounds of a Memory Buffer

400: Uncontrolled Resource
Consumption

918: Server-Side Request Forgery

401: Missing Release of Memory
after Effective Lifetime

94: Improper Control of
Generation of Code

CVE ID: Name

2022 2023 2024

 1068 (+55%)

 860 (+9%)

 705 (+46%)

 677 (-6%)

529 (-25%)

500 (+23%)

461 (-16%)

450 (-3%)

433 (+121%)

 397 (-28%)

312 (-8%)

279 (+14%)

 232 (-40%)

 231 (+65%)

 230 (+62%)

197 (-7%)

194 (-15%)

144 (-37%)

 140 (-32%)

78 (-34%)

32 (-24%)

 490 (-54%)

 464 (-34%)

 440 (90%)

 389 (-26%)

 387 (-55%)

 312 (-54%)

 202 (-56%)

 153 (-66%)

 152 (-70%)

133 (-42%)

132 (-53%)

125 (-71%)

101 (-49%)

95 (22%)

93 (191%)

88 (-72%)

86 (-40%)

81 (-58%)

46 (-88%)

37 (-74%)

27 (-88%)

 2,954 (-27%)

 779 (-57%)

 733 (-60%)

 4,062 (+28%)

1824 (+6%)

1804 (-16%)

 787

 722

 708

 691

 552

 550

483

464

407

 385

 339

245

230

 229

211

206

196

142

140

118

42

 3,175

 2,158

1,720

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

-

+1

-1

-

+1

+10

+1

-3

-2

-

-

-3

+5

+1

-3

+3

+29

+58

-5

+7

-1

-9

+7

-7

Rank Rank CVE Count (YoY)CVE Count (YoY)CVE CountRank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

27

30

46

76

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

22

31

32

38

71

Most common types of vulnerabilities

243 unique CWEs IDs were assigned to
CVEs in 2024, and the top three remain
consistent YoY: Cross-site Scripting,
Out-of-bounds Write, and SQL Injection.
However, there were three new
entrants into the top 20 most popular
vulnerabilities, which each experienced
unusually high jumps in growth:

401: Missing Release of
Memory after Effective Lifetime

362: Concurrent Execution using
Shared Resource with Improper
Synchronization (‘Race Condition’)

119: Improper Restriction of
Operations within the Bounds

of a Memory Buffer.

#46

#17

#28

#20

#30

#232024

2023

2024

2023

2024

2023

https://jfrog.com/ 142025 JFrog Ltd. All rights reserved.

2023 2024

Denial of Service

49.0%
Denial of Service

40.3%
-8.7%

Remote Code
Execution

19.0%
Remote Code
Execution

22.9%
+4.0%

Data Leakage

6.8%

Data Leakage

Script Code Injection

8.4%

Authentication Bypass 6.3%

Filter Bypass

Filter Bypass 4.2%

Prototype Pollution

Arbitrary File overwrite

Local Privilege Escalation 1.4%

Local Privilege Escalation 4.2%

Unspecified 6.4%

4.2%

0.5%

1.6%

Unspecified 3.7%

Prototype Pollution 0.7%

Arbitrary File overwrite 2.1%

Authentication Bypass 2.6%

12.5%

+3.6%

-3.0%

-2.8%

-4.2%

+3.5%

-0.9%

+1.6%

-4.3%

+5.7%

+5.6%

SSRF 5.6%

Database Injection 3.5%

To address the three most common
CWEs (Cross-site Scripting, Out-of-
bounds Write, and SQL Injection), which
can be detected by SAST tools, we
recommend teams scan their source
code with automated SAST tools in
order to prevent new vulnerabilities of
these types. In addition, Out-of-bounds
Write is an issue unique to low-level
(i.e. memory-unsafe) programming
languages such as C/C++. These can

be prevented by moving to high-level
languages as suggested by the U.S.
government.

It is important to note that YoY trends
for CWE types are prone to be affected
by random factors and one-off events.
For example, the backlog at NVD almost
certainly affects the representation
of prevalence of CWEs in 2024. Once
all CVEs are properly cataloged, these

numbers will likely change. Examining
a broader timeframe of 20 years, for
example, would reveal more meaningful
trends as the popularity of low-level
languages vs. high-level languages can
affect the number of memory corruption
vulnerabilities vs. high-level / web issues.
The fluctuation in popularity of specific
technologies, each prone to certain
types of CWEs, can affect these trends
as well.

Common vulnerability impacts for high profile CVEs 2024

Figure 9. Common vulnerability impacts for
high profile CVEs 2023 and 2024

Data Leakage (18) remained number three, but
also jumped in total percentage. There were
also increases in Authentication Bypass and
SSRF, which is newly identified in this year’s
research. On the other hand, we saw decreases
in Filter Bypass vulnerabilities.

This year, the JFrog Security Research team analyzed just over
140 High-Profile CVEs (HPCVE) based on their relevance and
potential impact to JFrog customers. Denial of Service remained
the top potential impact of exposure (58). Remote Code
Execution (33) remained the second most common YoY, but
increased from 18.9% to 22.9%. It is concerning to see Remote
Code Execution increasing as a total percentage of HPCVEs due
to the potentially devastating control it can give hackers.

The JFrog Security Research team considers several
factors when prioritizing the CVEs for research. The
team focuses on the relevant technologies for JFrog
clients and prioritizes mostly the “High” and “Critical”
severity issues (meaning CVSS score >= 7.5), but also
by using machine-learning-based severity prediction
when a CVSS score is not available. The team also
prioritizes any vulnerabilities that are exploited in
the wild or have high media profiles, even if they
received a Medium or Low public severity rating.

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices
https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

https://jfrog.com/ 152025 JFrog Ltd. All rights reserved.

0

500

1,000

1,500

2,000

2,500

3,000

3,500
No CVSS yet

Month

2022 2023

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200
CVEs

April July October April JulyJanuary January October April JulyJanuary October January

2024

Medium

High

Critical

Low

Critical High Medium Low No CVSS yet

Severity of the vulnerabilities being introduced into your
software supply chain

Figure 10.1. CVEs by month and severity within the last 3 years

(National Vulnerability Database)

The data shows a significant drop
and subsequent rebound of CVSS
assignments in the middle of 2024.
However, this is misleading. This
perceived drop is due to the fact
that in February 2024, NVD stopped
researching CVEs while restructuring
due to cutbacks. To solve this, NVD
announced in June 2024 that CISA has
been contracted to help their research.
Had this disruption not occurred, we
most certainly would have seen more
predictable CVSS numbers.

To address resource shortages, NVD
now mostly outsources CVSS scoring to
external vendors known as Authorized
Data Publishers (ADPs). Currently, CISA
is the first and only data publisher.
The JFrog Security Research team is
continuously analyzing the scoring
patterns of CVEs scored by CISA, and
early analysis indicates that CISA is
giving even more exaggerated scores
(weighting higher in severity) than NVD.
Looking to the future, there will also be
concerns about potential inconsistencies

in CVE scoring as additional Authorized
Data Providers come online. This is a
reality that organizations will have to
contend with as they determine how to
prioritize security efforts.

Based on the available NVD data, the
trend continues to remain consistent
with a high number of Medium and
High severity CVEs, low amounts of Low
severity CVEs, and Critical severity CVE
amounts between the Low and High/
Medium totals.

https://www.cve.org/ProgramOrganization/ADPs
https://www.cve.org/ProgramOrganization/ADPs

https://jfrog.com/ 162025 JFrog Ltd. All rights reserved.

CVSS Critical CVSS High

88%
Downgraded

57%
Downgraded

Upgraded
3%

CVSS Severity JFrog Severity

Critical

High

Medium

17

37

3

3

21

28

High

Critical

Medium

5

2
1

6

15

7

18

3

2
3

Low

Downgraded Upgraded Kept

Figure 10.2. CVE severity scores
(Proprietary JFrog Security Research Severity, compared to NVD Severity)

However, not all CVE ratings are
what they seem. The JFrog Security
Research team regularly evaluates
CVEs to determine their actual impact
and assigns a JFrog Severity Rating.
The JFrog Severity Rating, created by
the DevSecOps experts at JFrog, takes
into consideration the configuration
requirements for vulnerabilities to
be exploitable. The CVSS ratings look

purely at the severity of a successful
exploitation of the vulnerability as
opposed to how exploitable the
vulnerability is. Sometimes, the
configuration or method of exploit is a
non-standard setting for that package or
dependency, making it very unlikely that
the vulnerability will ever be exploitable.
This over-weighting of CVE scoring
continues to be a concern year-over-year.

The reason why this tendency to
score CVEs higher is concerning is
because no explanation of the scoring
methodology has changed. Since scoring
mechanisms are central to determining
the initial perception of risk associated
with a package, the over-weighting of
CVEs increases the potential for false
positives.

Based on the sample of 140
high profile CVEs, JFrog Security
Research revealed that 88% of
Critical and 57% of High CVE scores
were not as severe as the CVSS
scoring would have you believe.

Figure 10.3

https://jfrog.com/ 172025 JFrog Ltd. All rights reserved.

63.9%

CVEs with High
Applicability

(80% - 100% applicability)

CVEs with Moderate
Applicability

(20% - 80% applicability)

21.3%

14.8%

CVEs with Low
Applicability
(0% - 20% applicability)

Figure 10.4. Applicability rating of 183 high profile CVEs

(Proprietary JFrog Security Research using CVE and JFrog databases)

Simply assigning severity scores to CVEs is
insufficient for assessing the impact of a
vulnerability on a specific software product.
JFrog Security Research goes beyond just
assigning JFrog Severity scores; the team
also evaluates the conditions that affect the
exploitability of these vulnerabilities. To this
end, JFrog creates “applicability” scanners that
determine whether the criteria for exploitability
are met in a particular software product.

The JFrog Security Research team created
applicability scanners for 183 CVEs that were
made public in 2024 (CVE-2024-*), focusing
on the High and Critical CVEs from the most
popular components and technologies among
our customers. This chart details how often
the CVE was found to be applicable (i.e. able to
potentially be exploited by a bad actor) among
JFrog customers versus not applicable (i.e. not
exploitable). Only 27 CVEs (15%) were found
to be highly exploitable, with an applicability
rate greater than 80% in artifacts scanned by
JFrog Xray in 2024. By contrast, 117 CVEs (64%)
were found with a low exploitability rate and an
applicability rate of 0%-20%.

CVE-2024-24792 is one of the notable examples
with a very high applicability rate (99.6%). This
vulnerability can be triggered through a typical
usage of the TIFF parsing package in the Go
programming language, and frequently appears
in applications that manage image uploads and
processing. It is applicable in most scenarios
because when the library is used to accept TIFF
images that may be manipulated by a user, this
CVE can be triggered, leading to a panic in the
application.

On the other hand, CVE-2024-45490 (related
to Expat, an XML parser written in C) is one of
the least applicable CVEs, with less than 10%
of cases deemed applicable. For an attacker
to exploit this vulnerability, they would need
to manipulate the “len” parameter passed to
the library’s API function XML_ParseBuffer().
However, this scenario is highly improbable,
as developers typically provide the length of
the XML document themselves, often using
functions like `stat` or `XML_GetBuffer`.

Applicability ratings of high profile CVEs

https://jfrog.com/ 182025 JFrog Ltd. All rights reserved.

74%

Configuration

21%

5%

Code reachability

Environment

The JFrog Security Research team also looked
into how these CVEs would be reachable and
exploitable in an application. Determining
whether a vulnerability is applicable or
exploitable requires more than just evaluating
the reachability of the vulnerable code through
traditional call reachability analysis. It is
essential to also examine the configuration
settings of applications and libraries, as well as
the environmental conditions of the underlying
operating system. This holistic approach
ensures a comprehensive assessment of
potential risks, whereas merely identifying
reachable code overlooks critical factors

that can significantly influence vulnerability
exploitation.

For example, in the famous “Sudoedit
bypass”, CVE-2023-22809, the applicability of
the vulnerability can only be determined by
examining Sudo’s configuration file - “sudoers”
- and looking for a specific non-default
configuration. There is no way to determine
whether the vulnerability is applicable by
examining code reachability, as the vulnerable
component “sudo” is a standalone utility and
not a code library that can be invoked by 1st-
party code.

Figure 10.5. Applicability types of CVEs in 2024

(Proprietary JFrog Security Research using CVE and JFrog databases)

Applicability types of High Profile CVEs

https://jfrog.com/ 192025 JFrog Ltd. All rights reserved.

Some malicious packages are worse than others

In our 2024 report, we highlighted the
prevalence of malicious packages in the npm
ecosystem. A 2024 end-of-year review of
the popular package ecosystems confirms
that npm maintains its status as the worst
offender when it comes to the presence of
malicious packages. It is worth mentioning,

and perhaps not surprising given the rapid rise
in its popularity, that there was a roughly 6.5x
further increase in malicious models being
uploaded to the Hugging Face ecosystem this
year. Here are three noteworthy malicious
attacks that merited attention from the JFrog
Security Research team:

XZ Utils backdoor

On March 29th, a significant security breach was reported within
XZ Utils, a widely used package in major Linux distributions, which
contained malicious code allowing unauthorized remote SSH access.
The sophisticated backdoor, found in versions 5.6.0 and 5.6.1, modified
OpenSSH server routines to enable specific attackers to execute arbitrary
payloads before authentication, effectively hijacking victim machines.

Source >

Docker Hub

Recent malware campaigns targeting Docker Hub have resulted in the
creation of millions of “imageless” repositories containing malicious
metadata instead of container images. Alarmingly, nearly 20% (about
three million) of these public repositories hosted harmful content,
ranging from spam promoting pirated material to malware and phishing
sites, uploaded by automated accounts.

Source >

Hugging Face

Monitoring of AI models has revealed one family of models that execute
code upon loading a Pickle file, granting attackers a connectback shell
and full control over the compromised machine through a backdoor.
This silent infiltration poses significant risks, potentially allowing access
to critical systems, leading to large-scale data breaches or corporate
espionage, while leaving victims unaware of the compromise.

Source >

https://jfrog.com/blog/xz-backdoor-attack-cve-2024-3094-all-you-need-to-know/
https://jfrog.com/blog/attacks-on-docker-with-millions-of-malicious-repositories-spread-malware-and-phishing-scams/
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/

https://jfrog.com/ 202025 JFrog Ltd. All rights reserved.

Other sources of risk hiding in your code

CISOs and AppSec teams already know that it is important
to scrutinize what you bring in from the open-source
community. However, it is not the only area to be mindful of
for holistic application security.

2024 had its share of security incidents where data was exposed due to
data leaks, exposures, and misconfigurations.

April 2024

Home Depot suffered a data breach after a third-party
SaaS vendor leaked a subset of employee data exposing
the personal information of 10k employees.

Source >

August 2024

Thousands of Oracle NetSuite customers were
inadvertently leaking sensitive data to unauthenticated
users through externally facing stores built with NetSuite
SuiteCommerce or NetSuite Site Builder.

Source >

September 2024

Over 1,000 misconfigured ServiceNow enterprise
instances were found exposing Knowledge Base (KB)
articles that contained sensitive corporate information to
external users and potential threat actors.

Source >

September 2024

Significant data exposure potentially affecting millions
of users was discovered within Microsoft Power Pages,
a low-code SaaS platform, due to misconfigured access
controls.

Source >

September 2024

Data belonging to ~2000 Fortinet customers stored on
an Azure SharePoint site was accessed by a hacker who
subsequently leaked it on the internet.

Source >

December 2024

The data leak involving Volkswagen’s automotive
software company, Cariad, stands out as one of the most
impactful SaaS misconfigurations of 2024. This incident
exposed data collected from approximately 800,000
electric cars, including precise vehicle locations and
information that could be linked to drivers’ names.

Source >

Misconfiguarations and mistakes — the impact of human error

https://www.cpomagazine.com/cyber-security/a-home-depot-third-party-data-breach-leaks-the-personal-information-of-10000-employees/
https://www.csoonline.com/article/3487234/thousands-of-netsuite-stores-leak-sensitive-data-due-to-access-control-misconfiguration.html
https://www.bleepingcomputer.com/news/security/over-1-000-servicenow-instances-found-leaking-corporate-kb-data/
https://appdevelopermagazine.com/microsoft-misconfigurations-expose-millions-of-records-globally/
https://www.darkreading.com/cloud-security/fortinet-customer-data-breach-third-party
https://www.bleepingcomputer.com/news/security/customer-data-from-800-000-electric-cars-and-owners-exposed-online/

https://jfrog.com/ 212025 JFrog Ltd. All rights reserved.

aws_access

openai

telegramtoken

github

google_auth

sendgrid

gitlabv2

pypi

npm

github_old

hugging_face

slack

alibaba_oss

sonar_token

sendinbluev2

elasticsearch

paypaltoken

mailgun_secret

azure

shopify

Total Exposed Tokens

 6,010

4,501

 302

 283

 168

 160

 150

 119

 109

 89

Token TypeActive Tokens

4,237

31%4,081

 643

393

 358

334

 313

 303

 1,097

 860

% Inactive% Active

Active vs. Inactive Exposed Tokens

1956 33%

67%

31%

1%

0%

17%

1%

85%

71%

3023

1260

67%

33%

69%

99%

100%

83%

99%

15%

29%

6

0

2

62

216

265

Total Exposed
Tokens

% Active

% Inactive

Active Tokens

The JFrog Security Research team
scanned millions of artifacts in the
most common open-source software
registries: DockerHub, npm, and PyPI.
This year, they also noted where
Active Tokens were found (i.e. tokens
that could be used at the time of data
collection).

From year to year, there were
increases across nearly every type of
token discovered; there was a 66%

increase in total secrets exposed YoY.
The most exposed tokens were the
same as in our last report, and also
saw significant increases YoY: AWS
(increased 70%), OpenAI (increased
103%), Telegram (increased 62%),
and GitHub (increased 82%). GCP
tokens also saw a significant spike,
up 86% YoY.

Hugging Face tokens are a new token
type that was added to JFrog Security

Research team’s scanners this year,
indicative of the growing popularity
of open-source models and data sets.
Hugging Face tokens represented the
highest percentage of Active Tokens
compared to others on the list (~85%
active). Notably, the JFrog Security
Research team identified 6,790
secrets active at the time of data
collection, revealing a huge potential
source of access to proprietary
systems for bad actors.

Figure 11.1. Top 20 most exposed token types in 2024

State of leaked secrets in binary artifacts

Total Active Exposed Tokens

6790

https://jfrog.com/ 222025 JFrog Ltd. All rights reserved.

2024

2023

2022

2023 YoY

2024 YoY

85%

I don’t know

No

Yes

10.5%
4.5%

aws_access

openai

telegramtoken

github

google_auth

sendgrid

npm

slack

alibaba_oss

twilio

6,010
3,545

1,959

4,237
2,618

482

4,081

2,245
663

 1,097

 860

 358

 303

 302

36

 589

 638

 451

274

276

 608

 1,068

 291

109

 185

148

 222

+70%

+62%

+82%

+86%

+35%

-21%

+11%

+9%

-94%
+174%

+86%

+48%

+314%

+119%

-45%

+239%

+443%

+81%

Total Exposed Tokens YoYToken Type

2,220
4,501

-
-

+103%

Figure 11.2. YoY comparison of most common exposed tokens

Does your organization have security measures
in place to detect secrets left in code bases and/
or leaked tokens? (Commissioned survey, 2024)

Q
Organizations are investing specifically to keep secrets out of the
hands of bad actors or the public. However, there is a significant
15% of organizations that either do not have measures in place
or are not sure. Given the state of leaked secrets and the fact that
we saw increases across nearly every type of token discovered,
this is a concerningly high portion of the respondent population
who are leaving themselves vulnerable.

https://jfrog.com/ 232025 JFrog Ltd. All rights reserved.

apk-abc12dEF

In June 2024, the JFrog Security
Research team discovered and
reported a leaked access token
with administrator access to
Python’s, PyPI’s and Python Software
Foundation’s GitHub repositories,
which was leaked in a public Docker
container hosted on Docker Hub.

As a community service, the JFrog
Security Research team continuously
scans public repositories such
as Docker Hub, npm, and PyPI to
identify malicious packages and
leaked secrets. The team reports any
findings to the relevant maintainers

before attackers can take advantage
of them. Although JFrog encounters
many secrets that are leaked in
the same manner, this case was
exceptional because it is difficult
to overestimate the potential
consequences if it had fallen into
the wrong hands; one could have
supposedly injected malicious code
into all PyPI packages and even to the
Python language itself.

The JFrog Security Research team
identified the leaked secret and
promptly reported it to PyPI’s security
team, who revoked the token within

a mere 17 minutes. Although disaster
was averted this time, the incident
serves as a stark reminder of the
catastrophic potential that a single
leaked secret can unleash. Given
that PyPI is one of the world’s major
repositories, the repercussions could
have been far-reaching, affecting
countless users and projects. If
such a breach can occur in Python/
PyPI, which is a highly maintained
and widely used infrastructure, it
underscores the vulnerability that
exists across all platforms and
languages, and highlights that this
threat could strike anyone at any time.

How severe can a secret leak be?

https://jfrog.com/blog/leaked-pypi-secret-token-revealed-in-binary-preventing-suppy-chain-attack/
https://jfrog.com/blog/leaked-pypi-secret-token-revealed-in-binary-preventing-suppy-chain-attack/
https://blog.pypi.org/posts/2024-07-08-incident-report-leaked-admin-personal-access-token/
https://jfrog.com/blog/the-software-extinction-event-that-wasnt/

https://jfrog.com/ 242025 JFrog Ltd. All rights reserved.

1
2
3

Key takeaways

Organizations and security tools that rely solely on
NVD vulnerability data are at risk of missing critical
CVE information due to the significant backlog delays
experienced by the NVD over the past year. These delays
mean that newly disclosed vulnerabilities and their
potential impacts may not be promptly included in the
database, leaving organizations unknowingly exposed
to emerging threats. To mitigate this risk, it’s essential to
supplement NVD data with additional sources, such as
vendor advisories and threat intelligence feeds, to ensure
timely awareness of critical vulnerabilities. Organizations
should evaluate any security scanning tool’s data sources
to ensure broad coverage and redundancy.

Organizations must maintain vigilance in safeguarding
against exposed secrets and work to extend protections to
developers working on personal and community projects.
Even if a developer’s system becomes compromised from
a personal project, the impact can spread to corporate
systems as well. The implications of someone finding an
exposed secret or leaked token could be extremely severe.
In the case of the JFrog-discovered Python/PyPI secret, the
holder of such a token would have had administrator access
to all of Python’s, PyPI’s and Python Software Foundation’s
repositories, potentially making it possible to carry out an
extremely large-scale software supply chain attack. If it can
happen to Python/PyPI, it can happen to anyone.

With an ever-increasing volume of CVEs to contend
with, security and development teams could
become paralyzed in an effort to triage every single
vulnerability. Understanding the applicability, attack
vector, and potential impact of a CVE in an application
is crucial to focus efforts on remediating vulnerabilities
that actually matter. The JFrog Security Research team
continues to find over-inflated risk assessments in CVSS
scores, which appears to be an accelerating trend with
CISA now contributing to enriching CVE records as the
first Authorized Data Publishers.

The need for data redundancies

Exposed secrets can happen to anyone

Applicability, impact, prioritization

Bad actors are becoming more creative and resourceful
in their efforts to infiltrate the software supply chain. In
the case of the XZ Utils backdoor, the attacker built up a
credible reputation as an OSS developer over the span
of multiple years and used highly obfuscated code in
order to evade detection by code reviews. Other actors
are exploiting AI tools by identifying instances where AI
code assistants recommend “hallucinated” libraries, then
quickly creating that library containing malicious code.
Organizations must maintain vigilance, even with well
regarded open-source projects, and set operational risk
policies to prevent “overnight” libraries from accidentally
being pulled into their supply chain.

Malicious actor sophistication

https://jfrog.com/blog/leaked-pypi-secret-token-revealed-in-binary-preventing-suppy-chain-attack/
https://www.cve.org/ProgramOrganization/ADPs#ActiveAdps

https://jfrog.com/ 252025 JFrog Ltd. All rights reserved.

How Organizations are
Applying Security Efforts
Today

This year, we polled 1,402 Security, DevOps, and Engineering

professionals expanded our survey questions, and incorporated

findings from other JFrog-sponsored research reports to capture a

more holistic view of how teams are managing application risk across

the software development lifecycle (SDLC). While we found that most

teams have security frameworks and tools in place, we were surprised

to discover the prevalence of some risky activities such as downloading

third-party packages or libraries directly from the internet.

https://jfrog.com/ 262025 JFrog Ltd. All rights reserved.

71%

No

Not sure

28%

1%

Yes

Automated Process

Yes

Manually

No

We don't or
aren't able to

Not sure

N/A

Enforce RestrictionsAllow Downloads

72%

26%

2%

1%

28%

71%

More than 1 in 4 (26%)
respondents claim their
organization manually tracks and
enforces sourcing restrictions
for packages or other software
components directly from public
registries or other sources on
the internet.

Sourcing restrictions

One of the best things organizations can do to address risk in their software
supply chain is to prevent risk from entering at all. This goes further than
“shifting left”, which typically means infusing security practices in the
development phase, and requires going “left-of-left” by blocking risk before it
even has a chance to enter the software supply chain in the first place.

Does your organization allow developers to
download packages, or other software components
directly from public registries or other sources from
the internet? (Commissioned survey, 2024)

How does your organization track and enforce sourcing restrictions for
packages or other software components directly from public registries or
other sources on the internet? (Commissioned survey, 2024)

An alarming 71% of organizations allow
their developers to download software
components from the internet. Best practice
is to restrict developers from downloading packages
or libraries directly from the internet because the
risk is simply too great, with the potential to expose
an entire organization to attacks through a single
developer’s machine. Traceability is also compromised,
because there is no way to know what a developer is
downloading if you allow them to download directly
from the internet.

However, the fact that this many organizations are
allowing it indicates a need. This is where an artifact

management solution that can proxy upstream public
registries can be particularly useful. An artifact repository
with proxy capabilities acts as a central control point
for every component that enters the software supply
chain, enabling teams to track and secure them. With
this type of solution, organizations can safely mitigate
the risk associated with this type of activity, and
prevent potential damage of incalculable scale.

Q

Q

https://jfrog.com/ 272025 JFrog Ltd. All rights reserved.

Security

62%

Developers

71%

DevOps

66%

 Security & Developers

45%

Developers & DevOps

45%

Who manages the process of getting the latest version of software packages,
libraries, and frameworks: security or developers? Select all that apply.
(Commissioned survey, 2024)

Down from 68% in 2023

Yes

No

The 72% of respondents indicating
they have automated processes is
surprisingly high, but this may be
influenced by which stage of the
SDLC the respondent is referring
to. For example, it is possible that
developers are manually examining
packages and dependencies prior to
checking them into their code base,
but automated processes may run
during the CI/CD cycle or later on
during audits of release builds. The

challenge with this approach is that
it creates rework for the developer
and can allow for exposures early in
the SDLC, as mentioned previously
in this report.

Of the total survey population, 19%
indicate that they allow developers
to download packages directly
from the internet and also leverage
manual approaches to enforce
sourcing restrictions. This requires

an extensive amount of difficult,
manual work and is not an effective
approach to blocking risk.

Those who report that they
allow developers to download
components directly from the
internet and also leverage
automated processes to track
and enforce sourcing restrictions
represent 52% of the total
respondent population.

When compared to previous years, it
seems as though developers are now
taking a more active role in managing the
latest packages, but security professionals
still hold responsibility, most likely when
it comes to reviewing and approving
packages for use. Organizations typically
note a combination of teams responsible
for the acquisition process with
‘Developers + Security’, and ‘Developers +
DevOps’ equally leveraged.

In order to increase velocity,
organizations need to adopt approaches
and solutions that empower developers
to bring in the new and latest versions of
libraries self-service, and automate the
approval of those packages that fall in
compliance with security policies. They
must also support a waiver management
program that can enable the team
responsible, whether AppSec or Security,
to integrate this waiver program into their
overall risk management strategy.

Up from 66% in 2023

Up from 61% in 2023

Q

https://jfrog.com/ 282025 JFrog Ltd. All rights reserved.

2023 2024

0-6

0-6

7+

7+ application security solutions

10+

10+

-36%

73%
+27%

58%
+48%

49%
42%

33%

27%

application security solutions

application security solutions

Scanning, scanning, scanning

49%41%10%
10+0-3 4-9

Number of application security solutions used

This is contradictory to what
we would expect based on the
focus in the market around tool
consolidation and what we hear
from JFrog customer leadership
about their desire to streamline
a secure software development
process. The data suggests
that ASPM (Application Security
Posture Management) – a new
category of tools that allow
organizations to maintain multiple

scanning solutions while filtering
out duplicate results – are being
used by organizations to maintain
over-coverage to prevent the risk
of missing something. However,
ASPM is a “bandaid” for security
tool sprawl and not a solution. We
do not foresee this growth in total
security tools used to continue
next year as organizations refocus
their consolidation efforts.

Although organizations are using more security tools than ever, coverage gaps
still exist. Lack of scanning across both code and binaries, and inconsistent
scanning across the SDLC and production stand out as common blindspots.

How many application security solutions are you using?
(Commissioned Survey, 2023 & 2024)

Q

Respondents report using
more application security
solutions in 2024 compared
to 2023. By the end of
2024, 73% report using 7 or
more application security
solutions, juxtaposed to 58%
in the prior year.

YoY Change

https://jfrog.com/ 292025 JFrog Ltd. All rights reserved.

SAST (Static Application
Security Testing)

SCA (Software
Composition Analysis)

DAST (Dynamic Application
Security Testing)

ASPM (Application Security
Posture Management)

API Security

IAST (Interactive Application
Security Testing)

Container Security

Runtime Security

IaC (infrastructure as Code)
Security

Malicious Package Detection

Other, please specify

50%

48%

46%

41%

51%

45%

39%

47%

47%

41%

0%

Does your organization apply security scans at the code
or binary level (or both)? (Commissioned survey, 2024)

</> 101110010110
</>

10111001011043% 29% 25%

Code and binary scanning Code scanning only Binary scanning only

Down from 56% in 2023 Up from 12% in 2023Up from 27% in 2023

This year, applying security scans
at only the binary scanning level
doubled in popularity: 25% of
respondents say they apply
security at this level versus just
12% in 2023.

43% of respondents say their
organization applies security scans

at both the code and binary levels,
a slight dip from 56% in 2023. This
is a somewhat alarming trend, as
organizations should ideally be
scanning at both the code and
binary level to prevent and catch
risk as early as possible. Reasons
for taking this approach include the
fact that there are certain types of

vulnerabilities that only manifest at
the binary level.

For example, secrets injected into
binaries or memory-corruptions
inserted by the compiler can create
security issues not present in source
code or accidentally left in the
builds that end up in production.

Q

What types of application security solutions are you using?
(Commissioned survey, 2024)

% Responses (n=1224) YoY (%)

-11%

-8%

-12%

*

-6%

-8%

-4%

-3%

+3%

*

-0.3%

* Data not collected in 2023

Q
No single tool garners overwhelmingly unanimous
usage. API security and SAST are the only two to reach
or exceed 50%.

With continued emphasis on shift-left efforts, the high
usage of SAST makes sense. It is also not surprising to
see organizations investing in API security tools given
the prevalence of modern microservice applications
where APIs present a potential weak spot for
exploitation by bad actors.

Relative to each other, the rates of tool type usage
remain consistent YoY, but the overall percentage of
respondents who indicate they use a specific tool type
has decreased. This is particularly interesting given
that we also see the total number of security tools
increasing, as shown earlier in this report. This may
indicate an overlap in the types of tools used, or that
different teams each have their own preferred security
tools that end up providing the same functionality as
other teams’ preferred tools. Organizations should
consider a security tool audit to identify where they
have overlaps or gaps in security tooling.

https://jfrog.com/blog/leaked-pypi-secret-token-revealed-in-binary-preventing-suppy-chain-attack/
https://jfrog.com/blog/leaked-pypi-secret-token-revealed-in-binary-preventing-suppy-chain-attack/

https://jfrog.com/ 302025 JFrog Ltd. All rights reserved.

When asked to rank where within
the software development lifecycle is
best to apply security, the top three
reported points remain the same YoY:

During
coding

At build time At promotion Before
release

In runtime None of
the above

When I’m ready to
submit a pull request

59%
48%

61%
44%

57% 56%

0.5%

</>

</>

Popular combinations

During coding and at build time

At build time and in runtime

At build time and before release

During coding and before release

During coding and in run time

% Selected

41%

39%

39%

36%

37%

</>

</>

</> At code writing

Build

When bringing in
Open-Source Software (OSS)

Before deployment

Runtime

Promoting

2023 2024

StageRank Rank Mean (YoY)Mean

1

2

3

4

5

6

1

2

3

4

5

6

-

+1

-1

-

-

-

 3.94 (+2.2%)

 3.74 (+0.7%)

 3.59 (-4.4%)

 3.52 (-1.4%)

 3.22 (+2.5%)

 3.00 (+0.8%)

 3.85

 3.75

 3.72

 3.57

 3.14

2.97

</>

At code writing

M=3.94
Build

M=3.74

When bringing in
open-source software

M=3.59

+

At what point in development does your organization typically perform
security scans? Select all that apply. (Commissioned survey, 2024)

Where do you feel is the best place to apply security in your SDLC? (Commissioned survey, 2024)

“During coding” remained the most
reported point within the SDLC where
organizations typically perform security
scans, with nearly 3 in 5 respondents claiming that
their organization typically performs security scans at
this stage.

41%

39%

30%

36%

37%

During coding At build time

+At build time Before release

</>

+At build time In runtime

+During coding In runtime

+During coding Before release

</>

</>

Q

Q

https://jfrog.com/ 312025 JFrog Ltd. All rights reserved.

Le
ve

ls
 S

el
ec

te
d

In
te

rs
ec

tio
n

Si
ze

(%
 R

es
po

ns
es

)

30

25

20

15

10

5

0

Logged

Signed

Dedicated

Validated

3%
4% 5% 5%

3%
5% 5%

7%
5%

7%
4% 4%4% 6%

2%

32%

 62%

69%

66%

67%

50 0

Logged - Packages signatures are validated before publishing

Signed - Packages are built on a dedicated host

Dedicated - Package build data & metadata is signed

Validated - Package build metadata is logged

Establishing visibility and control across application pipelines

Which of the following security framework levels are implemented
in your organization? (Commissioned survey, 2024)

Q

It might be obvious that because
businesses build applications, they
would need to manage risk holistically
at the application level. However,
while organizations already define and
track applications across the SDLC,
the level of control and traceability
varies significantly. It is essential to

strengthen these two elements in order
to confidently manage risk and ensure
trust in the software released.

Control starts at the sourcing stage,
before there is even an “application” in
place. The components and libraries
that are integrated into the development

process fundamentally shape the
security posture of the final product.
By carefully evaluating and selecting
third-party resources, organizations
can mitigate risks well before they
materialize in the application.

A majority of organizations surveyed have turned to
frameworks such as Supply-chain Levels for Software
Artifacts (SLSA), to help improve the security and integrity
of software supply chains. The data shows significant
adoption of at least one SLSA level, while just over a third
of respondents are adopting all SLSA levels.

https://jfrog.com/ 322025 JFrog Ltd. All rights reserved.

85%

No

Not sure

Yes

14%

1%

Using a dedicated third-party system such as
ServiceNow or Backstage

Using a dedicated third-party system such as
ServiceNow or Backstage

Adding metadata in the code or binary repository
Yes

3rd party system

In-house system

Add metadata

N/A
No

Not sure

Track Owner Tracking Method

37.7%

32.6%

29.9%

1%

14%

85%

For each application you build in your
organization, do you keep track of the owner of
the application (i.e., team / individuals)
 (Commissioned survey, 2024)

Q

For each application you build in your organization,
how do you keep track of the owner of the
application? (Commissioned Survey, 2023 & 2024)

Tracking the owners of applications
and the various microservices that
comprise them is essential for
many reasons, including quickly
remediating issues, understanding
interdependencies across

applications, and establishing proper
governance and business continuity
plans. While most organizations
track the owner of the applications
they are building, the way they do so
varies widely. Responses are nearly

evenly split between dedicated third-
party systems, dedicated in-house
systems, and using metadata in the
code or binary repository. Not a
single respondent reports using any
method other than these three.

Q

Tracking the owner of each application

https://jfrog.com/ 332025 JFrog Ltd. All rights reserved.

Full visibility

Partial visibility

Not sure

No visibility

60%

33%

7%

<1%

We automatically collect attestation evidence
throughout the SDLC

We have automated gates built into the
Continuous Integration (CI) process

We manually approve software to move to the
next stage of the SDLC

We do not have a formal process for compliance
and governance

Do you have visibility into the provenance of software running in
production (i.e., who committed the code for a given service, what tests
and validations it went through, where dependencies came from)?
(Commissioned Survey, 2023 & 2024)

Only 60% of organizations
say they have full visibility
into the provenance of
the software running in
production. About a third
(33%) have partial visibility, and
fortunately, just under 8% have no
visibility or aren’t sure about their
provenance.

Q

Understanding the provenance of
software is essential for assuring
the quality and security of software
released, and is quickly becoming
a mandatory requirement of
various government regulations.
The roughly 8% who report having

no visibility should, at a bare
minimum, take an inventory of
their codebases and any external
packages, and ensure they have
implemented automated CI/CD that
tracks and assigns build versions.
Although many take source control

for granted, it is possible that a
fraction of this ~8% have yet to
implement a robust source control
solution that tracks code changes
during development.

How do you ensure standards for software testing /
quality are adhered to during the software creation
and release process for compliance and governance
purposes? (Commissioned Survey, 2023 & 2024)

The methods used to ensure standards for testing and
quality also vary across organizations. The majority
(70%) leverage automated approaches, but nearly a
third (29%) still require manual approvals to advance
across stages of the SDLC.

Q
32% 38% 29%

1%

% Responses

Automatic approaches

https://jfrog.com/ 342025 JFrog Ltd. All rights reserved.

% Responses

Less than 1 hour

1-3 hours

4-6 hours

7-9 hours

Time Spent

39%

24%

18%

11%

25%44%26%

4%
1% 69%

Strongly agree
- I am consistently moving between
 tools or environments

Agree
- I often switch tools or environments

Undecided

Disagree
- I sometimes switch tools or environments

Strongly disagree
- I rarely or never leave my tools
 or environments

How much time security efforts are costing your organization

In research conducted by IDC and
commissioned by JFrog, 60% of
professionals say their developer and/
or security team typically spends 4
days or more remediating application
vulnerabilities in a given month. The

cost of this averages out to about
$28k per developer per year spent
on security related tasks. Not only
does this have financial implications,
but a negative effect on developer
experience (DevEx) as well.

Developer time spent outside working hours to address security issues

Developers are spending ~3.6 hours a week outside working hours to
address security issues. This creates an environment ripe for burnout. ~3.6

hours a week spent per
developer outside working
hours to address security
issues

IDC: The Hidden Cost of DevSecOps
Published: September 2024 | IDC #US52537524

The average organization spends $28k
per developer per year on security
related tasks. While DevSecOps is a
business imperative and essential

for developing secure applications,
inefficient or poorly implemented
tools and processes waste developer
time and create business costs.

Money spent on security related activities

$28K
spent per developer per year
on security related tasks

Too much context switching

69% of developers agree their security
related responsibilities require them
to switch contexts frequently. As
organizations seek to improve DevEx, they
should consider that regularly switching
between tools will hurt those efforts and
make it less likely that developers will
engage in security activities.

69%
of developers agree
their security related
responsibilities require them
to switch contexts frequently

https://jfrog.com/whitepaper/the-hidden-cost-of-devsecops-a-developers-time-assessment/

https://jfrog.com/ 352025 JFrog Ltd. All rights reserved.

2023 2024

>1 Day

1 Week

1 Week

2 Weeks

2 Weeks

>1 Day

3%

91%

70%

40%

88%

68%

105%

20%

41%

All 1k to <2k 2k to <5k 5k to <10k 10k or more

 > 1 day

 + 1 week

 + 2 weeks

Package
Approval

Time

Organization Size

91% 94% 92% 92% 87%

68% 72% 68% 74% 57%

41% 37% 37% 49% 38%

YoY Change

Hours

Secrets

IaC

SCA

SAST

Scan Type

4.7

4.5

3.8

3.7

Rank

1

2

3

4

Time spent by types of scan

Developers are spending the most
amount of time on secrets scanning,
indicating either the need for more
training on coding practices for
handling tokens and secrets or
the need for more efficient secret
handling tools. It is also crucial to

ensure that no secrets are left in
code, which is the equivalent of
dropping your house keys attached
to a key chain that states your
address. Oftentimes, the secrets left
in code can give attackers unfettered
access to critical systems and data.

4.7
hours spent on secrets
scanning by developers

The IDC study was conducted online in June 2024
and collected responses from 210 U.S. and European
developers, development team leaders and
managers, and product owners who use DevSecOps.
The study sought information on the business
impact of developer time on DevSecOps, DevSecOps
tools and tasks consuming developer time, the value
of developer time on DevSecOps, and the impact of
security tasks on developer flow and satisfaction.

IDC: The Hidden Cost of DevSecOps
Published: September 2024 | IDC #US52537524

How long does it typically take to get approval to use a new package/library?
(Commissioned Survey, 2023 & 2024)

Developers are waiting longer than
ever for new packages. Midsize
organizations (5k to 10k employees)
tend to wait the longest of any
size, with 92% waiting more than

one day, 74% waiting more than a
week, and 49% waiting two weeks
or longer. While it is encouraging
to see developers more involved
in the process, it is clearly still

inefficient, likely due to reviews
and other manual efforts. More
is needed to make the process of
bringing in new components truly
self-service.

Q

https://jfrog.com/ 362025 JFrog Ltd. All rights reserved.

71%

Key takeaways

Organizations need to control, or at least have strong
visibility into what is coming into their software supply
chain via their developers and the dependencies
referenced in their applications. Over 71% of
organizations allowing developers to download directly
from the internet is concerning, and a major violation of
software supply chain security best practices. An artifact
management solution to proxy public registries should
be in place at every organization.

Security efforts are taking hours of developers’ time every
week. Organizations can and should be looking for ways
to reduce the impact of security efforts on developers
without compromising the security status of their
applications. Smart prioritization, contextualized results,
and automation are key in this domain.

Organizations appear to be using more security tools
than ever, but could this be positively or negatively
impacting their security posture? Either way, there are
still gaps in coverage and many organizations are not
scanning at both the code and binary level, which is
problematic.

Missing foundational practices for
software supply chain security

DevSecOps without
compromising DevEx

More scanners,
more problems?

85% of organizations track the owners of applications
they build internally, but the way they ensure application
standards varies dramatically, with almost a third
leveraging manual efforts for promoting their software
from one stage to the next. Any manual intervention
represents a potential for risk, either intentional or
accidental, and reveals an obvious area for improvement
by organizations.

Uplevelling
application management

https://jfrog.com/ 372025 JFrog Ltd. All rights reserved.

The Next Frontier of Risk:
AI and Machine Learning
Development

Nearly every security tool and an increasing number of developer tools
now tout AI-enhanced capabilities to accelerate development and
improve the detection and remediation of vulnerabilities. In this section
of the report, however, we focus on the building of AI tools, rather
than their use.

The Artificial Intelligence/Machine Learning (AI/ML) software supply
chain is the next frontier of risk for organizations, and it is much
further to the left on the maturity curve than traditional software
development. In fact, according to research JFrog commissioned with
InformationWeek, 79% of firms say security concerns are slowing the
use and/or integration of AI/ML features into software.

https://jfrog.com/ebook/ai-adoption-and-devsecops-staying-ahead-while-staying-secure/
https://jfrog.com/ebook/ai-adoption-and-devsecops-staying-ahead-while-staying-secure/

https://jfrog.com/ 382025 JFrog Ltd. All rights reserved.

AI Adoption And DevSecOps: Staying Ahead While Staying Secure
Published: September 2024 | InformationWeek & JFrog

The InformationWeek survey explored how well software
developers and cybersecurity teams understand the importance
of integrating application security into the software development
lifecycle. It also looked at how teams are protecting their
organizations against malicious code and avoiding improper
use of AI technologies. Key insights from that survey include:

Lack of business-wide AI security confidence

AI policies are still lacking Enforcement is even spottier

AI supply chain visibility is muddled

The study JFrog commissioned
with InformationWeek was
conducted online in May 2024 and
collected responses from 210 IT
and cybersecurity professionals
predominantly located in North
America. Respondents hailed from

companies of all sizes with job
titles from executive level to staff.
More than 21 vertical industries are
represented including consulting,
banking and financial services,
education, government, technology,
healthcare, and manufacturing.

While the InformationWeek study
uncovered interesting trends, the
remainder of this section dives a
bit deeper into how organizations
are actually bringing AI services
into their applications and
governing their usage.

79%
AI security concerns within
companies are data exposure
through LLM usage, malicious code
in AI models, and AI bias

of firms say security concerns are
slowing the use and/or integration
of AI/ML features into software

64% of organizations are either not at
all confident or only somewhat
confident in their ability to comply
with new and emerging regulation
around AI usage in software

of organizations have a single
source of truth for all software
components, including AI models

49% of firms have no reliable way to
control usage of ML models
in their apps

of organizations have no reliable
method for tracking open-source
packages in their software
containing transitive dependencies
to ML models

58% of companies either have no policy
in place or don’t know if they have
a policy that sets rules for how
developers use open-source AI
models or components

60% of companies don’t have a policy for
how developers source or license
their training data

68% of respondents report they have
no way to enforce AI component
usage or depend on manual
review to do so

59% say they have no mechanism or
rely on manual review to enforce
policies about training data

Trends in AI adoption and DevSecOps

More than

2/3

Less than

1/4
The top

3

https://jfrog.com/ 392025 JFrog Ltd. All rights reserved.

Other, please specify

4.4%

57%

1.2%

37.4%Certified list of specific models
and/or versions curated manually

Certified list of specific models and/
or versions curated manually

Anyone can use anything they want

Self-hosted OSS ML models

Self-hosted proprietary trained ML models

Self-hosted commercial ML models

Use commercial ML models as a
 service (access via API such as OpenAI,

 Claude Sonnet, Gemini, etc.)

We don't use ML models

47%

52%

44%

64%

5%

How do you govern ML model artifact usage within your
development organization? (Commissioned survey, 2024)

Q

As revealed in the InformationWeek
study, 49% of firms have no reliable
way to control the usage of ML
models in their applications. This
may explain why 4% of survey
respondents are willingly taking
no action, manual or otherwise, to
control what developers are using.

Of the total survey population,

The ways in which organizations are
bringing AI services and applications
to life varies, and the research
indicates that organizations are using
multiple methods at once.

By far the most popular
approach is using
commercial models
accessed via APIs (64%).
This enables organizations to
gain access to powerful, general-
purpose AI capabilities quickly and
without the upfront development or
infrastructure costs.

More than 1 in 3 (37%)
professionals say they
govern ML model artifact
usage via a manually
curated list of specific
models and/or versions.

What is your primary method for consuming ML models as part of the
applications you are developing? (Commissioned survey, 2024)

However, we also see organizations
investing in self-hosting models,
with over half self-hosting
proprietary models built for their

specific business needs. Nearly 1 in
2 respondents cite self-hosted OSS
models as their primary method of
consuming machine learning models.

Q

consume self-hosted
OSS models and govern
model artifact usage
manually.

16%

Usage, governance, and scanning of ML model artifacts

https://jfrog.com/ 402025 JFrog Ltd. All rights reserved.

Not sure

Yes

No
3.8%

79.5%

5.5%

11.2%

I don't need, as we're only using
models as a service via API

Does your organization have a mechanism in place for
scanning ML model artifacts for security vulnerabilities
or malicious models? (Commissioned survey, 2024)

Q
A significant majority (79%) of organizations
say they have some mechanism in place
for scanning ML model artifacts for security
vulnerabilities or malicious code. 11% do not
have a mechanism in place.

Fortunately, only 3% of the total survey
population report consuming self-hosted
OSS models and have no form of scanning
mechanism in place to prevent vulnerabilities
or malicious models. However, more still
needs to be done both at the organization
and security industry levels to ensure the right
tools and policies are in place to secure AI/ML
development.

https://jfrog.com/ 412025 JFrog Ltd. All rights reserved.

Key takeaways

Turning to commercial models seems to be a popular means to
accelerate bringing AI services into business applications. Accessing
commercial models via API also saves organizations time and money
when it comes to acquiring the tooling, resources, and expertise to
build and manage their own in-house models. Furthermore, it may
behoove organizations that do not have much experience with AI/
ML to entrust the security of their models to providers with more
expertise in this domain.

Accelerating AI through commercial models

Many organizations struggle to establish reliable methods for
managing the use of machine learning models within their
applications, and they often lack a single source of truth for all
software components, including ML models. Additionally, a significant
blind spot exists in their ability to effectively track open-source
packages that contain transitive dependencies related to ML models.
When these critical gaps are present in the ML software development
process, it not only becomes more challenging for organizations to
manage their AI/ML supply chains efficiently, but also increases the
risk of security vulnerabilities.

AI supply chain visibility is unclear

While 79% of organizations report some level of model scanning,
the current solution landscape for AI/ML model security is still in
its infancy with naive detection techniques. For example, current
approaches led to a 96% false positive rate in malicious model
identification on Hugging Face, while simultaneously missing threats
due to simplistic scanning techniques. While many security tools are
trying to capitalize on covering model artifacts, organizations must
seriously evaluate the efficacy of security providers’ model security
solutions.

Overconfidence in AI security

</>

https://jfrog.com/blog/jfrog-and-hugging-face-join-forces/

https://jfrog.com/ 422025 JFrog Ltd. All rights reserved.

Methodology

This report incorporates a combination of insights derived from JFrog
usage data, CVE analysis results from the JFrog Security Research team,
and commissioned third-party survey data. Here is a more detailed
look into each source:

JFrog Platform usage data

Technology usage trends highlighted in this
report come from an end-of-year snapshot
of anonymized usage data of the JFrog
Platform for Cloud, representing thousands
of customers, hundreds of thousands of
repositories, and Petabytes of data.

Package popularity is represented by Action
Count (upload/download), total number of
artifacts, total number of repositories, and total
artifact size for a given package type. Action

Count provides a good representation of how
often different package types are being called
and generated by developers as an indication of
actual use in software development.

It is possible that a handful of enterprises could
skew these rankings. However, because we also
look at artifact actions, we can safely conclude
which package type is actively being used as
part of the development process.

https://jfrog.com/ 432025 JFrog Ltd. All rights reserved.

Commissioned survey results

JFrog commissioned Atomik Research to
conduct an international online survey of 1,402
respondents working in select industries1
throughout the United States (n=375), the
United Kingdom (n=205) , India (n=206),
Germany (n=205), France (n=205) and Israel
(n=205). The sample consists of full-time
employees who hold specific job functions2
within their organization’s information
technology, information systems or technology
departments. Moreover, all respondents
indicate their employing organization consists

of 1,000 or more total employees and confirm
the presence of a software development team
with at least 50 team members within their
organization. All participants had the option to
access English, French, German, Hebrew, and
Hindi translations of the online questionnaire.

The margin of error for the overall sample is
+/- 3 percentage points with a confidence level
of 95 percent. Fieldwork took place between
November 22 and December 09, 2024. Atomik
Research is a creative market research agency.

Analysis by the JFrog Security Research team

As a designated CNA, the JFrog Security
Research team regularly monitors and
investigates new vulnerabilities to understand
their true severity and publishes this
information for the benefit of the community
and all JFrog customers.

1. To qualify for participation, all respondents must indicate they

are employed at organization that serve the following industries:

(a.) aerospace (b.) architecture and engineering (c.) automotive (d.)

banking, financial services, insurance & fintech (e.) energy, oil, gas (f.)

government or public sector (g.) healthcare and life sciences (h.)

hospitality (i.) manufacturing (j.) retail (k.) technology (l.) transportation

and logistics (m.) utilities, telecom & power

2. To qualify for participation, all respondents must indicate having job

functions of, or similar to, the following: (a.) AI specialist or AI engineer

(b.) application security engineer (d.) cybersecurity engineer (e.) data

scientist (f.) developer (g.) DevOps architect (h.) DevOps engineer (i.)

engineering manager (j.) machine learning specialist or ML engineer

(k.) platform engineer (l.) security architect (m.) security researcher

(n.) site reliability engineer (o.) software architect (p.) software

developer (q.) software engineer (r.) solutions architect in addition to

indicating employment in their organization’s information technology,

information systems, technology departments or IT product

development department.

This report includes data pulled from
public sources via the JFrog Catalog service,
CVE information pulled from the National
Vulnerability Database, and proprietary analysis
performed by the JFrog Security Research team
on those data sources.

https://research.jfrog.com/
https://research.jfrog.com/

https://jfrog.com/ 442025 JFrog Ltd. All rights reserved.

IoT Devices

Data Centers

Multi-Cloud

Native Support for
All Open-Source

Repositories

Source Code
Repositories

Native Support
for All CI/CD Tools

End-to-End Security

Data Sources

The gold standard for
managing the lifecycle of
software artifacts, containers ,
and ML models, with native
support for over 30 different
package technologies .

Defend your software
supply chain with
automated, proactive
blocking of malicious
or risky open-source
packages and ML models.

Identify and resolve open
source vulnerabilities
and license compliance
issues in your software
and models with
DevOps-centric security.

Take supply chain security to
the next level with software
supply chain security
exposure scanning, code
scanning, and contextualized
impact analysis.

Get real-time visibility into
runtime vulnerabilitie s at
the package level, prioritize
potential threats and quickly
identify its source and
developer for fast remediation.

Extend your circle of trust
to the last mile of software
delivery and take software to
the ideal location for optimal
consumption.

Bring enterprise DevOps
and security solutions to IoT
development to manage IoT
fleets and software updates
at scale.

Go from idea to production with the all-in-one solution to
build, deploy, manage and monitor all your AI workflows,
from GenAI and LLMs to classic ML.

About the JFrog Platform

This data report contains “forward-looking” statements, as that term is defined under

the U.S. federal securities laws, including but not limited to statements regarding the

JFrog usage data and the software supply chain.

These forward-looking statements are based on our current assumptions, expectations

and beliefs and are subject to substantial risks, uncertainties, assumptions and changes

in circumstances that may cause JFrog’s actual results, performance or achievements

to differ materially from those expressed or implied in any forward-looking statement.

There are a significant number of factors that could cause actual results, performance

or achievements, to differ materially from statements made in this press release,

including but not limited to risks detailed in our filings with the Securities and Exchange

Commission, including in our annual report on Form 10-K for the year ended December

31, 2024, our quarterly reports on Form 10-Q, and other filings and reports that we may

file from time to time with the Securities and Exchange Commission. Forward-looking

statements represent our beliefs and assumptions only as of the date of this press

release. We disclaim any obligation to update forward-looking statements.

The JFrog Platform is a highly scalable and open cloud-native
solution that integrates with the package technologies and tools
in the software supply chain. It provides organizations with
full control and traceability as software components flow from
developers to all deployment environments, including ML models,
edge devices, and production data centers.

	Introduction
	Executive Brief
	What’s in Your
	Software Supply Chain?
	Number of programming languages used in development organizations
	New packages per year per package type
	Top package technologies in use by organizations
	Popular libraries
	Pace at which new OSS package are being injected into an organization
	Key takeaways

	The Accelerating Risk in Your Software Supply Chain
	Vulnerabilities found in a given technology or package type
	Total removed and deprecated packages
	Most common types of vulnerabilities
	Common vulnerability impacts for high profile CVEs 2024
	Severity of the vulnerabilities being introduced into your software supply chain
	Some malicious packages are worse than others
	Other sources of risk hiding in your code
	Misconfiguarations and mistakes — the impact of human error
	State of leaked secrets in binary artifacts
	How severe can a secret leak be?

	Key takeaways

	How Organizations are Applying Security Efforts Today
	Sourcing restrictions
	Scanning, scanning, scanning
	Establishing visibility and control across application pipelines
	How much time security efforts are costing your organization
	Key takeaways

	The Next Frontier of Risk: AI and Machine Learning Development
	Trends in AI adoption and DevSecOps
	Usage, governance, and scanning of ML model artifacts
	Key takeaways

	Methodology
	JFrog Platform usage data
	Analysis by the JFrog Security Research team
	Commissioned survey results

	About the JFrog Platform

