
Copyright © 2025 JFrog Ltd. 2025 | www.jfrog.com

Championing  
Trusted Releases:
A Security Leader’s Guide To
Ensuring Software Integrity

Table of Contents
Executive Summary...

Overview..

The Software Supply Chain..

Platform Element..

 Code Repositories..

 Continuous Integration/Continuous Delivery (CI/CD) Pipelines..

 Cloud Infrastructure and Orchestration...

Software Elements..

 Open-Source Libraries and Frameworks..

 Third-Party APIs and Services...

 Proprietary (First-Party) Code...

The SDLC and Its Role in Software Integrity..

SDLC Phases and Artifact Promotion Criteria...

 Development and Coding...

 Building and Integration...

 Testing and Quality Assurance...

 Release and Deployment..

Proving Software Integrity..

SLSA Attestations / Artifact Provenance..

 The Role of SLSA Attestations..

Software Bill of Materials (SBOM) ..

 What an SBOM Contains...

 SBOM Quality..

 Proving Software Integrity With SBOMs...

Other Types of Evidence From Across the SDLC ...

 Source Code and Development Evidence..

 Build and Packaging Evidence..

 Application Testing and Release Evidence...

Evidence Management Throughout the SDLC..

Storing and Securing Evidence...

Retrieving and Using Evidence for Assurance..

Building Trustworthy Software With JFrog..

JFrog AppTrust: Application Risk Governance..

Evidence Through JFrog Ecosystem Integrations... 

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 2

3

4

6

6

7

7

8

8

8

9

10

10

11

11

11

12

12

13

13

14

15

15

16

16

17

17

17

18

18

19

19

20

20

21

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 3

Executive Summary
Enterprise security and compliance leaders and their development and operations
counterparts know all too well that software applications represent one of the most difficult-
to-defend attack surfaces in the enterprise. Cloud-native technologies, complex operations,
prolific use of open source software (OSS), and the recent addition of AI/ML models, make
today’s software development lifecycle more difficult to secure and ensure the integrity of
the applications within it.

This white paper serves as a guide for enterprise security and compliance leaders to:

Better understand today’s complex software supply chain and how it is more vulnerable
than ever to security threats and other risks.

Get a detailed overview of the types of evidence throughout the software supply chain
that can be used to prove software integrity.

Better govern the software development lifecycle through security gates and establish
higher levels of trust in the organization’s applications.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 4

Overview
From a practical security standpoint, trusting an application means having verifiable
assurance that it is secure, without hidden vulnerabilities, malicious code, or unintended
functionality that could compromise data, systems, or user privacy. This trust extends
beyond the application's immediate code to its entire lineage – every component, library,
and dependency that has been used for every single release.

From a compliance perspective, trust translates into demonstrable adherence to a myriad  
of industry standards and governmental regulations, such as GDPR, HIPAA, PCI DSS, and
emerging cybersecurity mandates. Organizations must prove, through rigorous audits,
continuous monitoring and industry recognized documentation, that their applications meet
the necessary security controls, protect sensitive data and maintain auditable tracking from
development to deployment and through to runtime as well. Failure to do so can result in
severe penalties, reputational damage, and loss of customer trust.

Ensuring the integrity of each and every application, however, presents a difficult challenge.
The architectural shift towards microservices, containers, AI and machine learning models,
and vast open-source ecosystems has introduced unprecedented complexity and dynamism.
Applications are no longer monolithic entities built in isolated environments; they are
distributed, ephemeral, and composed of hundreds, if not thousands, of interconnected
components, many of which are third-party or open source. This fragmentation dramatically
expands the attack surface, making it challenging for developers, who often operate under
immense pressure to keep up with the release cadence, to inadvertently introduce
vulnerabilities through misconfigurations, insecure coding practices, or incorporating
compromised dependencies.

The rapid pace of continuous integration and continuous delivery (CI/CD) pipelines, while
boosting agility, can also inadvertently accelerate the propagation of insecure code if  
security is not deeply embedded at every stage of development. Furthermore, the shared
management responsibility found in cloud environments, often leads to ambiguity regarding
security ownership, creating potential blind spots that attackers are eager to exploit.

Software supply chain breaches, such as Solarwinds and CodeCov, continue to proliferate–
especially those which target open source software and the dependencies that developers
rely heavily on. On September 8th, 2025, a malicious actor compromised the npm registry  
by publishing trojanized versions of 18 widely-used packages, after obtaining developers’
tokens in a phishing attack. The injected payload was obfuscated with the popular

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 5

The serious consequences of software supply chain attacks underscore why CISOs, Chief
Compliance Officers, and security leaders are under immense and escalating pressure. They
are on the front lines, tasked with defending increasingly complex digital perimeters against
motivated and well-resourced adversaries. The "buck stops" with the CISO when a breach
occurs, leading to intense scrutiny from boards, regulators, and the public. Beyond the
immediate operational chaos and reputational damage, the legal ramifications for failing to
prevent and report a security breach are severe and growing. Depending on the jurisdiction
and the nature of the data compromised, organizations can face massive financial penalties
(e.g., multi-million dollar fines under GDPR or CCPA), costly litigation from affected
individuals or class-action lawsuits, and even criminal charges for executives in cases of
gross negligence or intentional concealment. Furthermore, regulatory bodies can impose
strict compliance obligations, revoke licenses, and mandate costly remediation efforts, all  
of which can cripple a business. The imperative for CISOs is clear: proactive, comprehensive
security across the entire software supply chain is not just a best practice, but a legal and
existential necessity.

“javascript-obfuscator” library and contained a cryptocurrency stealer malware. The malware
replaced methods of XMLHttpRequest class with its own, in order to monitor web3 traffic
(for a deep technical analysis of this attack, read the detailed blog from JFrog’s Security
Research team entitled, “

”.

New compromised packages identified in largest npm attack in

history (September 9th, 2025)

https://jfrog.com/blog/new-compromised-packages-in-largest-npm-attack-in-history/
https://jfrog.com/blog/new-compromised-packages-in-largest-npm-attack-in-history/

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 6

The Software Supply Chain
Today’s software supply chain is a complex, interconnected ecosystem that encompasses
every stage of an application's journey, from initial conception to coding, deployment and
ongoing operations. It comprises every tool, service, code segment, and human interaction
involved in developing and deploying an application, making it a prime target for threat
actors seeking to compromise applications at scale.

The software supply chain can be categorized into two primary groups of elements:

Software Elements - These are based on the people who code, use libraries, create
applications and all the artifacts associated with those operations

Platform Elements - These are the software tools that DevOps teams use to store,
distribute, document and configure software components and the development
environment.

Platform Elements
Platform components refer to the infrastructure, tools, and systems that facilitate the
development, testing, building, and deployment of software. Compromise at this layer  
can have far-reaching consequences, as it can affect all software flowing through the
compromised platform.

Platform Elements

Peolple

Processes

Tools

Software Elements

IaC (Cloud Infra &

Orchestration)

Artifact 
RegistriesCI/CD Pipelines

Code 
Repositories

Production

Application

Software

Artifacts

OSS

DependenciesSource Code

Customer

Fig. 1: The Software and Platform Elements of today’s software supply chain

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 7

Code Repositories

These systems manage changes to source code, track revisions, and enable
collaboration among developers. They are the central repository for an application's
intellectual property.  

Common Vulnerabilities:

Weak Access Controls: Insufficient authentication or authorization can allow
unauthorized users to push malicious code, steal intellectual property, or tamper
with existing code.

Compromised Credentials: Stolen developer credentials can grant attackers
direct access to repositories.

Lack of Branch Protection: Unprotected branches can allow unreviewed or
malicious code to be merged into production.

Exposed Secrets: Sensitive information (API keys, passwords) accidentally
committed to repositories.

Continuous Integration/Continuous Delivery (CI/CD) Pipelines

CI/CD pipelines are automated processes that integrate code changes, run tests,
build artifacts, and deploy applications. As such, they play an essential role in
ensuring that the latest versions are distributed and deployed.  

Common Vulnerabilities:

Insecure Pipeline Configuration: Misconfigured build steps, overly permissive
permissions, or lack of input validation can allow injection of malicious
commands or scripts.

Compromised Build Agents/Runners: If a build agent is compromised, attackers
can leverage its access to inject malware into compiled artifacts or exfiltrate data.

Dependency Confusion: If not properly configured, CI/CD tools can fetch
malicious packages from public registries instead of private ones.

Insufficient Logging and Monitoring: Lack of visibility into pipeline execution
makes it difficult to detect and respond to attacks.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 8

Cloud Infrastructure and Orchestration

As applications migrate to the Cloud, code such as IaC is replacing hardware with
software. This includes underlying cloud services and container orchestration
platforms where applications are built, deployed, and run.  

Common Vulnerabilities:

Misconfigurations: Incorrectly configured security groups, IAM roles, storage
buckets, or network policies can expose services and data.

Insecure API Endpoints: Exposed or poorly secured APIs for managing cloud
resources can act has entry points for malicious code.

Container Escapes: Vulnerabilities in container runtimes or orchestration
platforms can allow an attacker to break out of a container and access the host
system.

Lack of Network Segmentation: Flat networks in cloud environments can allow
attackers to easily move laterally once a single component is compromised.

Software Elements
Software components are the building blocks of applications, and comprise the actual code,
libraries, and frameworks that constitute the application itself. The increasing reliance on
open-source software and third-party components significantly broadens the scope of
potential vulnerabilities. According to JFrog’s recent

 report, fast-moving organizations are releasing one or more new packages every day.
Software Supply Chain State of the Union

2025

Open-Source Libraries and Frameworks

Reusable code modules, often freely available, are used by developers and
incorporated into their applications to accelerate development speed and increase
reliability.

The fact is that Open Source Software (OSS) is a major component of today’s
software supply chain. Its prolific use allows developers to move fast in building
applications, taking advantage of components and functions which have already
been tested and are ready for deployment.
 

While this is certainly a positive step towards increasing development efficiency,  
the downside is that most vulnerabilities found in an organization's code base are
unfortunately introduced via OSS. Finding and remediating OSS vulnerabilities, using
techniques such as to analyze direct and transitive dependencies, is critical,
along with remediating vulnerabilities based on known , as early as possible in
the development process.  

Common Vulnerabilities:

Known Vulnerabilities (CVEs): The most common issue, where a publicly
disclosed vulnerability exists in a version of a library used by the application. (e.g.,
Log4j's Log4Shell).

Malicious Packages: Attackers can inject malicious code directly into popular
open-source projects or publish seemingly legitimate but compromised packages
to public registries.

Outdated Dependencies: Using old versions of libraries that contain unpatched
vulnerabilities.

License Compliance Issues: While not directly a security vulnerability, improper
use of open-source licenses can lead to legal complications.

https://jfrog.com/software-supply-chain-state-of-union/
https://jfrog.com/software-supply-chain-state-of-union/
https://jfrog.com/learn/sdlc/sca/
https://jfrog.com/learn/devsecops/cve/

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 9

Reusable code modules, often freely available, are used by developers and
incorporated into their applications to accelerate development speed and increase
reliability.

The fact is that Open Source Software (OSS) is a major component of today’s
software supply chain. Its prolific use allows developers to move fast in building
applications, taking advantage of components and functions which have already
been tested and are ready for deployment.
 

While this is certainly a positive step towards increasing development efficiency,  
the downside is that most vulnerabilities found in an organization's code base are
unfortunately introduced via OSS. Finding and remediating OSS vulnerabilities, using
techniques such as to analyze direct and transitive dependencies, is critical,
along with remediating vulnerabilities based on known , as early as possible in
the development process.  

Common Vulnerabilities:

Known Vulnerabilities (CVEs): The most common issue, where a publicly
disclosed vulnerability exists in a version of a library used by the application.  
(e.g., Log4j's Log4Shell).

Malicious Packages: Attackers can inject malicious code directly into popular
open-source projects or publish seemingly legitimate but compromised packages
to public registries.

Outdated Dependencies: Using old versions of libraries that contain unpatched
vulnerabilities.

License Compliance Issues: While not directly a security vulnerability, improper
use of open-source licenses can lead to legal complications.

SCA
CVEs

Third-Party APIs and Services

This refers to external services or APIs integrated into an application, such as
payment gateways, authentication services, mapping APIs and AI/ML models.  

Common Vulnerabilities:

Insecure API Keys/Credentials: Hardcoding API keys or using weak
authentication for external service calls.

Broken Authentication/Authorization: Flaws in how the application
authenticates or authorizes calls to third-party services, or vice-versa.

Data Exposure: Third-party services mishandling sensitive data passed to them.

Rate Limitation Issues: Lack of proper rate limiting on API calls can lead to
denial-of-service or data enumeration attacks.

https://jfrog.com/xray/
https://jfrog.com/learn/devsecops/cve/

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 10

Proprietary (First-Party) Code

This is the unique code written by an organization's internal development teams. 
Common Vulnerabilities:

Common Weaknesses (): Injection flaws (SQL, command), broken
authentication, sensitive data exposure, XML external entities (XXE), broken
access control, security misconfigurations, cross-site scripting (XSS), insecure
deserialization, using components with known vulnerabilities, insufficient logging
and monitoring.

Logic Flaws: Errors in application logic that can be exploited such as bypassing
business rules and privilege escalation.

Hardcoded Secrets: Embedding sensitive credentials directly into the code.

Insecure Error Handling: Revealing too much information in error messages
that could aid an attacker.

OWASP Top 10

Understanding these components and their associated vulnerabilities is the first step
towards building a resilient software supply chain security strategy.

The SDLC And Its Role In Software
Integrity
The software supply chain provides the foundational framework for ensuring that
applications are not only functional and reliable, but also secure and compliant with
business and regulatory requirements. It is what effectively enables your Software
Development Lifecycle (SDLC). In the context of software integrity, integrating security into
every phase of the SDLC, a practice often referred to as , is crucial. This proactive
approach transforms security from a reactive, late-stage checkpoint into a continuous, data-
driven effort.

DevSecOps

https://owasp.org/www-project-top-ten/
https://jfrog.com/learn/devsecops/devsecops/

SDLC Phases and Artifact Promotion Criteria
The key to a mature DevSecOps program is to define and enforce specific criteria, or "gates",
that a software artifact must meet before it can be promoted to the next phase of the
development cycle. These gates ensure that only verified and secure components proceed,
creating a verifiable chain of trust. The sections below define each major SDLC phase and
outline security and compliance criteria that software developing organizations are
recommended to use in assessing whether an application component should be promoted
to the next phase.

SDLC PHASE RECOMMENDED CRITERIA FOR PROMOTION

The source code must pass Static Application
Security Testing (SAST) with all high- and critical-
severity vulnerabilities either remediated or
formally accepted.

All third-party libraries and open-source
components must be validated against a
vulnerability database, and any known  
critical vulnerabilities must be addressed.

Code must be reviewed by a peer to ensure it
meets both quality and secure coding standards.

Development and Coding

In this phase, developers write
the source code. The focus is
on producing high-quality,
secure code while adhering  
to established standards.

A complete and accurate Software Bill of  
Materials (SBOM) must be generated for the
artifact, detailing all components, versions,  
and licenses.

The source code, binaries and all relevant
dependencies must be scanned for known
vulnerabilities, and all critical findings must  
be resolved before proceeding.

The build process must be reproducible  
and tamper-proof, with the final application
cryptographically signed to prove its origin  
and integrity.

Building and Integration

This phase compiles the source
code and its dependencies into  
a single, deployable software
application. This is a critical
point for validating the integrity
of all components included  
in a potential release

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 11

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 12

RECOMMENDED CRITERIA FOR PROMOTIONSDLC PHASE

Dynamic Application Security Testing (DAST)  
must be performed on the running application to
identify vulnerabilities that may not be visible in
the source code. All critical findings must be
addressed.

The application must pass a series of documented
security test cases, confirming that it meets its
security requirements.

If required, a formal penetration test must be
conducted, with all findings remediated or
documented as accepted risk.

Testing and Quality Assurance

In this phase the application  
is validated in a controlled
environment to verify its
functionality and security  
before it is released.

The software artifact must be cryptographically
signed and attested, providing irrefutable proof
that it is the same artifact that passed all previous
gates.

All collected evidence—including SBOMs, SAST/
DAST reports, and build logs—must be stored in a
centralized, tamper-proof repository and linked to
the final artifact.

The target production environment must meet all
predefined security hardening and configuration
standards.

Release and Deployment

This is the final and most
important phase as it focuses
on securely packaging and
deploying the validated
application to a production
environment.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 13

Proving Software Integrity
The strength of a software integrity claim depends on two  
major factors: (1) the extensiveness of the evidence you collect
throughout the software development lifecycle and (2) how you
govern the software supply chain based on that evidence.

This section offers a detailed overview of some of the more
common types of evidence DevOps and application security
teams should collect.

SLSA Attestations / Artifact Provenance
To combat the growing threat of supply chain attacks, software-producing organizations
have rallied around a set of standards to ensure the integrity of software artifacts. One of
the most prominent frameworks is , or Supply-chain Levels for Software Artifacts.
Developed by the Open Source Security Foundation (OpenSSF), SLSA is a vendor-neutral,
security-enhancing framework designed to prevent tampering and improve the integrity of
software from its source code to its final, distributable artifact.

SLSA operates on a maturity model with four distinct levels, with each successive level
building upon the previous one to provide greater assurance.

SLSA

SLSA LEVEL 1

A operates on a
maturity model with
four distinct levels,
with each successive
level building upon
the previous one to
provide greater
assurance.

SLSA LEVEL 2

Demands that the
build is hosted on  
a trusted service,
where the build
process is protected
from tampering.

SLSA LEVEL 3

Adds stricter
controls, such as  
a non-forgeable
record of the build
and a secure,
hermetic build
environment.

SLSA LEVEL 4

The highest level,
requiring two
independent,
verified human
reviewers and a  
fully hermetic,
reproducible build
process.

https://jfrog.com/learn/grc/slsa-framework/

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 14

The Role of SLSA Attestations

The core mechanism for proving software integrity in the SLSA framework is the attestation.
A SLSA attestation is a cryptographically signed, machine-readable statement that captures  
a detailed record of how a software artifact was produced. It's essentially a tamper-proof
certificate for your software, providing all the critical information needed to verify its journey
through the supply chain.

An attestation provides provenance—a verifiable chain of custody for the software.  
This provenance includes crucial details like:

The Source Code: A definitive link to the exact commit hash in a version control system
that was used to build the software.

The Build Process: The specific CI/CD pipeline, build scripts, and commands that were
executed.

The Build Environment: Information about the environment where the build occurred,
including its isolation, security controls, and the versions of tools used (e.g., compilers,
dependencies).

When an organization consumes a software artifact, they can use the accompanying SLSA
attestation to verify its integrity. By checking the cryptographic signature on the attestation,
they can confirm that it was generated by a trusted party (e.g., the software vendor). They
can then inspect the provenance to ensure the artifact was built from the expected source
code in a secure, non-tampered-with manner. This process creates a powerful, auditable
defense against many types of supply chain attacks, including those seen in the SolarWinds
and CodeCov breaches, where malicious code was injected into the build or distribution
process itself.

In essence, SLSA transforms the question of "Can I trust this software?" into a verifiable, data-
driven process. By generating and consuming SLSA attestations, enterprises can confidently
link the final software artifact to its secure source and build process, ensuring software
integrity for their users and customers.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 15

Software Bill of Materials (SBOM)
In the effort to secure the software supply chain, a foundational and indispensable tool  
is the Software Bill of Materials (SBOM). An SBOM is a formal, machine-readable list of
ingredients that make up a software component. It provides a complete inventory of all
the open-source and third-party components, libraries, and dependencies used to build a
piece of software. This concept gained significant national importance with the issuance of
Executive Order 14028 in 2021, which mandates that software producers provide SBOMs
to their customers, particularly for those selling to the U.S. government. This order
recognized the need for greater transparency to manage supply chain risks effectively.

What an SBOM Contains

A high-quality SBOM goes far beyond a simple list of software ingredients; it provides a
detailed, structured dataset that allows security teams to manage risk proactively. The
information it should contain is critical for its utility and can be broken down into several  
key categories:

Component Identification:

This is the core of the SBOM. For each
software component, it must include
a definitive name (e.g., Apache Log4j),
the exact version number, and the
supplier or author.

Cryptographic Hashes:

A unique cryptographic hash (e.g.,
SHA-256) of each component's file  
is essential. This allows for the
cryptographic verification of the
component's integrity, ensuring it
hasn't been tampered with since  
its inclusion in the SBOM.

Unique Identifiers:

To avoid ambiguity, each component
should be identified with a globally
unique identifier. Common
examples include Package URLs
(PURLs), which uniquely identify a
software package, or SPDX IDs.

Dependency Relationships:

An SBOM must clearly define  
the relationships between
components. This means it should
show which component depends
on which, mapping out the entire
dependency tree. This is crucial for
identifying transitive dependencies,
which are often the source of
hidden vulnerabilities.

License Information:

The license associated with each
component (e.g., Apache 2.0, MIT)  
is a mandatory element, as it
enables organizations to ensure
legal and compliance with open-
source licensing requirements.

SBOM

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 16

SBOM Quality

Not all SBOMs are created equal. The value of an SBOM is directly tied to the quality and
thoroughness of the information it contains. Enterprise security leaders should evaluate an
SBOM based on the following criteria:

Completeness: A high-quality SBOM must list all components, including all transitive
dependencies. An SBOM that only lists top-level components is of limited use as it fails  
to expose the full attack surface.

Accuracy: The information presented must be correct and free from errors. An
inaccurate SBOM can provide a false sense of security and lead to incorrect risk
assessments.

Timeliness: An SBOM should be generated at the time of the build, ensuring it reflects
the exact state of the software artifact being produced. An outdated SBOM is a significant
liability.

Standardization: The SBOM should be in a machine-readable format that can be easily
parsed and integrated with security tools. Widely adopted standards include SPDX and
CycloneDX.

Proving Software Integrity With SBOMs

SBOMs are essential for proactive software supply chain security, enabling organizations to
prove and maintain software integrity in several key ways. By consuming an SBOM, a security
team can:

Perform Proactive Vulnerability Management: In the event of a newly discovered
vulnerability (e.g., the Log4j vulnerability), a security team can use the SBOM to
immediately search for and pinpoint every application containing the vulnerable
component, saving countless hours of manual effort.

Enhance Risk Analysis: The dependency relationships and license information in an
SBOM allow organizations to perform a comprehensive risk analysis of their third-party
code, identifying risky or non-compliant components before they are deployed.

Establish a Runtime Baseline: An SBOM can serve as a trusted baseline for a running
application. Security tools can compare the components in the running application
against the SBOM to detect unauthorized changes, malicious injections, or unexpected
components that shouldn't be there.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 17

Other Types of Evidence from Across The SDLC
While SLSA attestations and SBOMs provide critical insights into a software artifact’s origin
and components, they are not the only pieces of evidence required to prove integrity. A
robust software supply chain security program collects a dossier of artifacts throughout
the SDLC that, when combined, tell a complete story of an application's security posture.
For a security leader, this collection of evidence is tangible proof of the organization’s due
diligence and proactive security culture as a software producer.

Source Code and Development Evidence

The integrity of a software artifact starts long before it's built. Evidence collected during the
development phase validates that the code itself is secure and well-vetted.

Static Application Security Testing (SAST) Reports: These reports prove that the source
code has been automatically scanned for vulnerabilities, such as injection flaws or
insecure cryptographic practices. A SAST report for a pull request, for example, can serve
as a gating function. If the report shows no new critical vulnerabilities, it can be approved.
This provides verifiable evidence that the code passed an automated security check at the
earliest stage.

Code Review Logs: Evidence of peer review from a version control system (like GitHub or
GitLab) shows that the code was manually inspected. For a security practitioner, a code
review log that includes a comment from a designated security reviewer, along with their
approval, proves that the code was not only checked for functionality but also for security
flaws.

Dependency Scanning Reports: These are generated by tools that scan for known
vulnerabilities in a project's open-source components. For example, a report from a built-
in CI/CD scanner, showing a "clean" status for all dependencies, is a crucial piece of
evidence that the application isn't inheriting a known vulnerability.

Build and Packaging Evidence

This phase focuses on the integrity of the build process itself, ensuring that the final artifact
is precisely what was intended to be produced and has not been tampered with.

Immutable Build Records: A record of the exact build environment, the commands
executed, and the resulting artifact's hash proves that the build was hermetic and
reproducible. This log file, stored in a secure location, provides a tamper-resistant record
of how the final artifact came to be. For example, a practitioner can inspect a log from a
CI/CD pipeline that shows the specific Docker image and shell commands used to build a
container, and then verify that the final container image hash matches the hash in the log.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 18

Cryptographic Signatures: A digital signature applied to a final software artifact—such
as a container image—provides irrefutable proof of its origin. This signature, verifiable
with a public key, confirms that the artifact was produced by a trusted entity and has not
been altered since it was signed. A security practitioner would use this signature to verify
an image before deploying it to production, preventing the use of a maliciously tampered
artifact.

Application Testing and Release Evidence

Before an application reaches production, it must be validated in a live environment.  
The evidence from this stage confirms that the deployed application behaves securely.  
Key assessments and reports include:

Runtime Security Assessment: Running the application in a staging environment and
monitoring it for security issues offers a means of generating substantial evidence, such
as alerts, detailed event logs, exploit detection reports, and compliance-ready
documentation.

Penetration Test Reports: These are formal reports from external, third-party security
firms. A penetration test report serves as powerful evidence of an application's security,
as it represents a dedicated, manual effort to find vulnerabilities. The report, which
includes details on findings and remediation, is often a mandatory compliance artifact  
for many enterprise customers.

Vulnerability Exception Reports: Not every vulnerability can be fixed immediately.  
A vulnerability exception report is a formal document that provides an auditable record  
of an identified vulnerability, explaining why it was not fixed, what mitigating controls are
in place, and a timeline for its eventual remediation. This proves that the security team is
aware of the risk and is actively managing it, rather than simply ignoring it.

Evidence Management Throughout
The SDLC
In the previous section, we detailed a broad array of different evidence types relevant to the
different phases of the SDLC. For security and compliance leaders like you, managing this
evidence means ensuring its integrity, accessibility, and utility for SDLC governance, audits,
incident response, and continuous verification. This requires a shift from fragmented,
manual processes to a centralized, automated system that provides an immutable, verifiable
record of software integrity.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 19

Storing and Securing Evidence
To prove software integrity, evidence must be stored in a way that is tamper-proof and easily
auditable. A centralized evidence repository is a critical component, serving as a single
source of truth for all security artifacts generated throughout the SDLC. This repository
should be built on principles of immutability. This means that once evidence is documented,
it cannot be altered or deleted. Technologies like content-addressable storage or immutable
ledgers are ideal for this purpose.

The integrity of the evidence itself is secured through cryptographic hashing. Each piece of
evidence - such as a Software Bill of Materials (SBOM), a vulnerability scan report, or a build
log - is hashed, and a unique digital fingerprint is recorded. This hash is then included in a
software integrity attestation, which is basically a digitally signed statement that binds the
application artifact to its complete collection of evidence. Standards like (Supply Chain
Levels for Software Artifacts) define these attestations, providing a framework for creating
verifiable, tamper-proof metadata. By using these attestations, an organization can prove
that a specific version of a software artifact was created by a trusted process and is
accompanied by all the required security and quality evidence.

SLSA

Retrieving and Using Evidence for Assurance
For security and compliance professionals, the primary goal of evidence management is to
enable efficient and accurate retrieval for two key purposes: audits and incident response.
The system must support automated, policy-based retrieval that ties evidence back to the
software artifact and its components.

When a compliance audit is required, the team can use the software's unique cryptographic
signature to query the evidence repository. The system then automatically retrieves the
complete package of evidence—including the SBOM, vulnerability scan results, and build
attestations—providing auditors with an irrefutable, transparent record of the software's
secure build process. This eliminates the need for time-consuming, manual evidence
gathering, significantly streamlining the audit process and demonstrating proactive security.

During a security incident, such as the discovery of a new critical vulnerability in an open-
source library, a security professional can immediately query the repository to identify which
applications use the vulnerable component. By retrieving the SBOMs associated with their
software fleet, they can quickly pinpoint affected applications, assess risk, and prioritize
remediation. This ability to instantly trace a component to every application that uses it  
is a fundamental pillar of modern vulnerability management and incident response. The
evidence, therefore, serves as the foundation for both proving past integrity and enabling  
a swift and decisive response to future threats.

https://jfrog.com/learn/grc/slsa-framework/

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 20

Building Trustworthy Software  
With JFrog
Piecing together all of the solutions and workflows needed to secure the software supply
chain and ensure software integrity backed by extensive evidence is a complex, time
consuming endeavor. JFrog offers a holistic approach of end-to-end software supply chain
security that is fully-integrated with its comprehensive software artifact management
platform. It allows application security teams, DevOps teams, and developers to secure
software artifacts in the same place they are managed.

In addition, the delivers a definitive means of proving software integrity and
establishing trust through evidence-based governance of the SDLC.

JFrog Platform

JFrog AppTrust: Application Risk Governance
JFrog AppTrust is an application risk governance solution that enables organizations like
yours to trust its software’s security and drive compliant releases with evidence-based
controls and contextualized insights. AppTrust gathers detailed evidence from across the
software supply chain that allows you to enforce policies ensuring that security, compliance,
quality, and performance criteria for your applications are met at each stage of the software
development lifecycle. Only versions of your application that successfully passed all lifecycle
“gates”, verifying they comply with all your policies, receive a “Trusted Release” badge.

All projects Actions

Timeline Content Evidence Properties Risk SBOM

Search Evidence

Verified Evidence Type

Test result

Vulnerability scan

Build providence

Approval

SBOM

Commit

Commit

Code scan

Curation

Category

Quality

Security

Workflows

Auditing

Security

Workflows

Workflows

Security

Security

Time

15 May 2020 8:30 am

15 May 2020 9:00 am

14 May 2024 8:30 am

14 May 2024 8:30 am

14 May 2024 8:30 am

13 July 2025, 12:48

13 July 2025, 12:48

13 July 2025, 12:48

13 July 2025, 12:48

Created By

Leslie Alexander

Wade Warren

Cameron Williamson

Darrell Steward

Annette Black

Jane Cooper

Albert Flores

Ralph Edwards

Jenny Wilson

Fig. 2: AppTrust console showing applications’ Trusted Release status

http://jfrog.com/platform
http://jfrog.com/apptrust

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 21

For more information on JFrog AppTrust and JFrog Software Supply Chain Security,  
please visit , or  
at your convenience.

https://jfrog.com/apptrust/ take an online tour schedule a demo

Evidence Through JFrog Ecosystem
Integrations

Evidence collection throughout the many facets of the
software supply chain is usually a manual, time-consuming
process, often without any formal workflows across tools,
stakeholders, processes.

JFrog offers a broad range of out-of-the-box technology
integrations and a rapidly-growing
that make it simple and seamless to capture key pieces of
evidence spanning security, compliance, performance, and
quality criteria that can be used to govern an organization’s
SDLC and ensure overall software integrity. Some of our
key evidence partners are:

evidence ecosystem

GitHub Actions build attestations will be converted into JFrog
Evidence and remain stored alongside each software package
indefinitely for compliance verification and policy
enforcement.

ServiceNow will share its change requests, approvals, and
vulnerability exceptions as signed evidence.

Sonar Source’s SonarQube will create and share signed code
quality, security scan findings, and code coverage attestations
with JFrog Evidence.

https://jfrog.com/apptrust/
https://jfrog.com/start/try-generic/
https://jfrog.com/platform/schedule-a-demo/
https://jfrog.com/blog/announcing-jfrog-evidence-partner-ecosystem/

	Cover
	A4 - 2
	A4 - 3
	A4 - 4
	A4 - 5
	A4 - 6
	A4 - 7
	A4 - 8
	A4 - 9
	A4 - 10
	A4 - 11
	A4 - 12
	A4 - 13
	A4 - 14
	A4 - 15
	A4 - 16
	A4 - 17
	A4 - 18
	A4 - 19
	A4 - 20
	A4 - 21

