
Copyright © 2025 JFrog Ltd. 2025 | www.jfrog.com

Beyond the Hijack:

A Guide to Proactively Securing
your npm Dependencies with
JFrog Curation

Table of Contents
Introduction..

Understanding the Attacker’s Advantage: The Hijack Lifespan...

The Proactive Playbook: Protecting your Software Supply Chain with JFrog Curation..

Beyond Prevention: A Multi-Layered Defense...

From Reactive to Proactive Security..

Extending Beyond Packages...

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 2

3

3

4

7

8

8

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 3

Introduction

In September 2025, the developer community witnessed the largest npm supply chain attack
in history. The result of two major attacks compromised over 200 popular packages with
over 500 malicious versions, accounting for more than 2 billion weekly downloads. Attackers
gained access by stealing a single developer's credentials, allowing them to upload malicious
versions of these trusted packages for unsuspecting users to download. The severity of this
attack and the number of developers affected, highlights a critical flaw in most DevSecOps
programs, where application security has become a reactive, rather than proactive
process.

Attackers are masters at exploiting the window of opportunity between the time a new
open-source (OSS) package is made available and before its vulnerabilities or malicious
nature is discovered. To truly secure your software supply chain, a strategic shift is required.
Some even suggest that application security must move to which
vulnerabilities post an actual threat and preemptively blocking ' risky' packages before they
ever enter your development environment.

In the case of the recent npm attack, the threat wasn't just theoretical - it was real.
Fortunately, customers with the relevant policies in place, were completely
protected as these malicious packages were blocked automatically and not allowed to enter
the development ecosystem. In terms of adopting a shift-left approach, the pre-emptive
exclusion of these packages really demonstrates the effectiveness of how proactive
application security can work in a real-world scenario.

This guide provides a step-by-step playbook for implementing a proactive defense that can
help protect your organization from current and future software supply chain attacks.

 "lefter than left"

 JFrog Curation

Understanding the Attacker’s Advantage:
The Hijack Lifespan

In order to defeat an attacker, we must understand their strategy and how they think.

The investigated this incident in particular, and researched
the general lifespan of hijack attacks in general. Their findings confirm that attackers rely on
both speed and the inherent trust developers place in familiar packages

In the npm hijacking attack,malicious code was injected to intercept and divert
cryptocurrency transactions from unsuspecting users and systems.

 JFrog Security Research Team

https://jfrog.com/blog/shifting-security-lefter-than-left-is-the-key-to-avoiding-risky-packages/
http://jfrog.com/curation
https://research.jfrog.com/

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 4

The Proactive Playbook: Protecting your
Software Supply Chain with JFrog Curation

JFrog Curation gives you automated control to ensure only approved open source packages
are used by your developers. Here are the three steps taken by JFrog customers to set up
this critical line of defense.

They succeeded by adding their malicious code to otherwise legitimate well known third
party packages. This tactic is effective because it also exploits a well known time gap.
Developers, driven by the need for new features and urgent bug fixes, quickly adopt the
latest version of familiar packages without checking for potential vulnerabilities.

At the same time, security agencies playing catch-up rely on public vulnerability databases,
which are only updated after a threat is discovered and analyzed. This defensive posture
guarantees you will always be a step behind. The only way to win is to eliminate the
attacker's window of opportunity altogether.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 5

Step 1: Block the Primary Attack Vector with an
"Immature Package" Policy

Guideline: JFrog's security research team studied hijacking attacks and found that most
attacks are discovered within 48 hours, with more sophisticated attacks usually discovered
within the first 14 days. This creates a 14-day window for the attacker's lifespan. By
implementing an 'immature package' policy that blocks downloads of packages that are 14
days or less from release, JFrog significantly reduces the risk from this entire class of attacks.

Action: This requires implementing a policy that blocks packages that have been available
for download for 14 days or less, which is a common window for exploits to be discovered

In the JFrog Platform, navigate to All Projects > Curation > Policies > New Curation Policy.

Set the Policy Name to something descriptive, like "Immature Package".

Define the Scope as "Organization-wide" for maximum protection.

For the Policy Condition, select "Package version is immature". The description notes this
policy "Detects 3rd party packages whose version release date is less than 14 days old".

Under Actions & Notifications, select "Block" to prevent these packages from being
downloaded into your repositories.

Click Save Policy

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 6

Step 2: Maintain Developer Velocity with Compliant
Version Selection

Step 3: Gain Full Visibility and Documentation with Audit
Events

Guideline: A developer is more inclined to bypass security gates if they slow down the pace
of development. The secret to successful compliance is making the process as transparent to
developers as possible.

Action: Instead of simply blocking a package, Curation uses a feature called Compliant
Version Selection to provide a seamless developer experience. When an open source
package that violates the “Immature Package Policy” is requested , Curation automatically
tries to direct the package manager to the latest compliant version. The developer can
accept the package or look for a suitable alternative. The bottom line is that developers get a
secure, working package without interruption, and compliance is enforced and documented
without the need for additional resources and IT support.

Guideline: A proactive policy is great, but you need a clear, auditable trail of every decision
the system makes.

Action: Use the Audit Event function to look for specific packages and check the logs for
suspicious activity. ThIs is essential for compliance, troubleshooting, and understanding the
health of the software supply chain.

Navigate to All Projects > Curation >
Audit Events.

Here, you can see a log of all packages
and whether they were Blocked,
Approved, or Passed based on your
policies.

You can easily filter to investigate
specific packages. For example, after
the npmincident, you could search for
chalk:5.6.1 to see its status and
confirm it was blocked by your
policies

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 7

Beyond Prevention: A Multi-Layered Defense

JFrog Curation may be the first line of defense, but it takes the entire JFrog Platform to
provide shift-left and shift-right security at every stage of the SDLC.

FIRST LAYER 
Finding Existing Vulnerabilities with JFrog Xray: What if a malicious package was downloaded
before the relevant Curation policies were in place? Xray continuously monitors your artifacts for newly
discovered vulnerabilities and malicious code without needing disruptive rescans. You can use the

GET xray/api/v2/search/impactedResources API to programmatically identify every resource impacted
by a specific threat.

SECOND LAYER

Detecting Threats in Production with JFrog Runtime: Security doesn't stop at deployment. JFrog
Runtime extends visibility into your production environments, where malicious packages are clearly
identified in a live assessment screen, allowing you to see threats running in real-time.

THIRD LAYER

Remediating Potential Threats with JFrog Advanced Security: The platform also provides detailed
remediation guidance. For a malicious package like chalk, this includes clear steps for removing the
package, refreshing stolen credentials, stopping associated processes, and removing any installed
backdoors.

Three Layers of Application Security Defense

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 8

From Reactive to Proactive Security

Extending Beyond Packages

The npm hijack attack was a wake-up call, proving that a reactive security posture is no
longer viable. The key to upgrading software supply chain security is moving to a more
proactive approach to minimize the attacker's window of opportunity.

By implementing automated controls with JFrog Curation, you can block risky and malicious
packages before they enter your ecosystem, without sacrificing developer productivity. This
is the essence of shifting "lefter than left." Following the npm incident, customers from highly
regulated industries such as finance, reached out to accelerate their Curation deployment
plans from next year to immediately. We even received direct feedback from customers
saying that Curation “saved my day’'.

Proactive security must extend beyond third party software packages to the entire software
supply chain including development tools. Unvetted IDE extensions can introduce the same
vulnerabilities as malicious code, but applying Curation's automated policies to these tools
ensures an end-to-end trusted software development environment.

Ready to build your own proactive defense?

Then and see how the JFrog Platform
can help protect you from present and future software
supply chain attacks.

schedule a demo

https://jfrog.com/curation/schedule-a-demo/

	Cover
	A4 - 2
	A4 - 3
	A4 - 4
	A4 - 5
	A4 - 6
	A4 - 7
	A4 - 8

