JFrog
Beyond the Hijack:
A Guide to Proactively Securing

your npm Dependencies with
JFrog Curation

Copyright © 2025 JFrog Ltd. 2025 | www.jfrog.com

Table of Contents

INEFOTUCTION .ttt b et b et h et s e bt b et e bt b et e bt e h et eh e b et e bt e bt e bt b e e e bt e b et e bt e b et eneeb et e bt e bt eneas 3
Understanding the Attacker's Advantage: The Hijack Lif@SPan..... oottt sae e 3
The Proactive Playbook: Protecting your Software Supply Chain with JFrog Curation........c.ceccveeeenennieneneeneneeseseeenen 4
Beyond Prevention: A MUlti-Layered DefENSE......ccc ittt sttt ettt eb e st see e s e 7
From REACLIVE 10 PrO@CHIVE SECUIILY....iiiiiiieieiesi ettt ettt ettt b et et st e st bt e bt e bt e st et e besbesbeebeebeenbenbentenbesbeas 8
EXEENAING BEYONA PACKAEZES ... ettt sttt ettt st sb ettt e st et e e s b s b e s b e s beeateste st enbenbesbesbeeseeseessenbansensesbessens 8

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 2

INTRODUCTION

In September 2025, the developer community witnessed the largest npm supply chain attack
in history. The result of two major attacks compromised over 200 popular packages with
over 500 malicious versions, accounting for more than 2 billion weekly downloads. Attackers
gained access by stealing a single developer's credentials, allowing them to upload malicious
versions of these trusted packages for unsuspecting users to download. The severity of this
attack and the number of developers affected, highlights a critical flaw in most DevSecOps
programs, where application security has become a reactive, rather than proactive

process.

Attackers are masters at exploiting the window of opportunity between the time a new
open-source (OSS) package is made available and before its vulnerabilities or malicious
nature is discovered. To truly secure your software supply chain, a strategic shift is required.
Some even suggest that application security must move "lefter than left" to which
vulnerabilities post an actual threat and preemptively blocking ' risky' packages before they
ever enter your development environment.

In the case of the recent npm attack, the threat wasn't just theoretical - it was real.
Fortunately, JFrog Curation customers with the relevant policies in place, were completely
protected as these malicious packages were blocked automatically and not allowed to enter
the development ecosystem. In terms of adopting a shift-left approach, the pre-emptive
exclusion of these packages really demonstrates the effectiveness of how proactive
application security can work in a real-world scenario.

This guide provides a step-by-step playbook for implementing a proactive defense that can
help protect your organization from current and future software supply chain attacks.

UNDERSTANDING THE ATTACKER'S ADVANTAGE:
THE HIJACK LIFESPAN

In order to defeat an attacker, we must understand their strategy and how they think.

The JFrog Security Research Team investigated this incident in particular, and researched
the general lifespan of hijack attacks in general. Their findings confirm that attackers rely on
both speed and the inherent trust developers place in familiar packages

In the npm hijacking attack,malicious code was injected to intercept and divert
cryptocurrency transactions from unsuspecting users and systems.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 3

https://jfrog.com/blog/shifting-security-lefter-than-left-is-the-key-to-avoiding-risky-packages/
http://jfrog.com/curation
https://research.jfrog.com/

They succeeded by adding their malicious code to otherwise legitimate well known third
party packages. This tactic is effective because it also exploits a well known time gap.
Developers, driven by the need for new features and urgent bug fixes, quickly adopt the
latest version of familiar packages without checking for potential vulnerabilities.

At the same time, security agencies playing catch-up rely on public vulnerability databases,
which are only updated after a threat is discovered and analyzed. This defensive posture
guarantees you will always be a step behind. The only way to win is to eliminate the
attacker's window of opportunity altogether.

THE PROACTIVE PLAYBOOK: PROTECTING YOUR
SOFTWARE SUPPLY CHAIN WITH JFROG CURATION

JFrog Curation gives you automated control to ensure only approved open source packages
are used by your developers. Here are the three steps taken by JFrog customers to set up
this critical line of defense.

Three Steps for Preventing Hijacking Attacks

Step 1 Step 2 Step 3

What: Block the What: Maintain What: Gain full
Primary Attack Vector Developer Velocity visibility

Why: To minimize Why: To maximize Why: To create a
thr attack window developer clear auditable
transparency source of truth

How: Reject
packages 14 days
old or less

How: Provide How: Use the Audit
Compliant Version Event function
Selection

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 4

Step 1: Block the Primary Attack Vector with an
"Immature Package" Policy

Guideline: JFrog's security research team studied hijacking attacks and found that most
attacks are discovered within 48 hours, with more sophisticated attacks usually discovered
within the first 14 days. This creates a 14-day window for the attacker's lifespan. By
implementing an 'immature package' policy that blocks downloads of packages that are 14
days or less from release, JFrog significantly reduces the risk from this entire class of attacks.

Action: This requires implementing a policy that blocks packages that have been available
for download for 14 days or less, which is a common window for exploits to be discovered

€ All Projects > Curation > Policies > New Curation Policy
Policy Name Immature Package v Curation Policy Details
Policy Name Immature Package
Scope Organization-wide &
Scope Organization-wide

/@ Package version is
/-

Policy Condition .
immature (moderate)

Policy Condition Package version éz'l Operational
is immature

(moderate)

Supported npm & W -eo ® g (+4)

Waivers (Optional) <

Description Detects 3rd party packages whose version
release date is less than 14 days old.
Immature packages might impose an
Actions & Notifications ~ operational risk due to the fact that they
have not yet been tested sufficiently for
factors such as stability, scale and more.

ORORORORO

Select the required action if a violation occurs

o @ @ i)
© | Block & Dryrun Policy Effectiveness Covered Repositories List @
Cancel Save Policy

FIGURE 1: Creating detailed policies blocking the use of immature packages in JFrog Curation

" |n the JFrog Platform, navigate to All Projects > Curation > Policies > New Curation Policy.

= Set the Policy Name to something descriptive, like "Immature Package".

= Define the Scope as "Organization-wide" for maximum protection.

= For the Policy Condition, select "Package version is immature". The description notes this
policy "Detects 3rd party packages whose version release date is less than 14 days old".

= Under Actions & Notifications, select "Block" to prevent these packages from being
downloaded into your repositories.

= Click Save Policy

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 5

Step 2: Maintain Developer Velocity with Compliant
Version Selection

Guideline: A developer is more inclined to bypass security gates if they slow down the pace
of development. The secret to successful compliance is making the process as transparent to
developers as possible.

Action: Instead of simply blocking a package, Curation uses a feature called Compliant
Version Selection to provide a seamless developer experience. When an open source
package that violates the “Immature Package Policy” is requested, Curation automatically
tries to direct the package manager to the latest compliant version. The developer can
accept the package or look for a suitable alternative. The bottom line is that developers get a
secure, working package without interruption, and compliance is enforced and documented
without the need for additional resources and IT support.

Step 3: Gain Full Visibility and Documentation with Audit
Events

Guideline: A proactive policy is great, but you need a clear, auditable trail of every decision
the system makes.

Action: Use the Audit Event function to look for specific packages and check the logs for
suspicious activity. Thls is essential for compliance, troubleshooting, and understanding the
health of the software supply chain.

= Navigate to All Projects > Curation >
Audit Events.

" Here, you can see a log of all packages
and whether they were Blocked,

& All Projects Curation > Audit Events

Audit Events Last updated: 160925 10:45:34 +0300 ©

chalk x 561 x

Approved, or Passed based on your « sack O Results for chalkis.6.1
policies.
= You can easily filter to investigate ® loded ki i

specific packages. For example, after
the npmincident, you could search for
chalk:5.6.1 to see its status and

confirm it was blocked by your

policies q

FIGURE 2: The Curation Audit Events screen provides a
centralized log of all package evaluations.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 6

BEYOND PREVENTION: A MULTI-LAYERED DEFENSE

JFrog Curation may be the first line of defense, but it takes the entire JFrog Platform to
provide shift-left and shift-right security at every stage of the SDLC.

Three Layers of Application Security Defense

JFrog Advanced
Security

Remediating Potential Threats

JFrog Runtime

Detecting new vulnerabilities
in production

JFrog Xray

Detecting existing vulnerabilities

Application

Finding Existing Vulnerabilities with JFrog Xray: What if a malicious package was downloaded
before the relevant Curation policies were in place? Xray continuously monitors your artifacts for newly
discovered vulnerabilities and malicious code without needing disruptive rescans. You can use the

GET xray/api/v2/search/impactedResources API to programmatically identify every resource impacted
by a specific threat.

Detecting Threats in Production with JFrog Runtime: Security doesn't stop at deployment. JFrog
Runtime extends visibility into your production environments, where malicious packages are clearly
identified in a live assessment screen, allowing you to see threats running in real-time.

Remediating Potential Threats with JFrog Advanced Security: The platform also provides detailed
remediation guidance. For a malicious package like chalk, this includes clear steps for removing the
package, refreshing stolen credentials, stopping associated processes, and removing any installed
backdoors.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 7

FROM REACTIVE TO PROACTIVE SECURITY

The npm hijack attack was a wake-up call, proving that a reactive security posture is no
longer viable. The key to upgrading software supply chain security is moving to a more
proactive approach to minimize the attacker's window of opportunity.

By implementing automated controls with JFrog Curation, you can block risky and malicious
packages before they enter your ecosystem, without sacrificing developer productivity. This
is the essence of shifting "lefter than left." Following the npm incident, customers from highly
regulated industries such as finance, reached out to accelerate their Curation deployment
plans from next year to immediately. We even received direct feedback from customers
saying that Curation “saved my day".

EXTENDING BEYOND PACKAGES

Proactive security must extend beyond third party software packages to the entire software
supply chain including development tools. Unvetted IDE extensions can introduce the same
vulnerabilities as malicious code, but applying Curation's automated policies to these tools
ensures an end-to-end trusted software development environment.

Ready to build your own proactive defense?

Then schedule a demo and see how the JFrog Platform
can help protect you from present and future software
supply chain attacks.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 8

https://jfrog.com/curation/schedule-a-demo/

	Cover
	A4 - 2
	A4 - 3
	A4 - 4
	A4 - 5
	A4 - 6
	A4 - 7
	A4 - 8

