jFrog

The Trusted Release Model:
A Strategic Blueprint for
Enterprise Software Delivery

Copyright © 2025 JFrog Ltd. www.jfrog.com

Table of Contents

EXE@CULIVE SUIMIMAIYooiiiiiiiiiieieiesete sttt sttt st e et e s et e st e st e s bt es e e st es s et et e saeeseeseeseensensensesbesbesseeseensensensesbessessesseensenes 3
Section I: The Enterprise Trust Dilemma: Moving Beyond Orchestration................cccocoooiiiniinninnnccee, 4
Section II: The Trusted Release Model: HOW It WOIKS............cccooiiiicicccncec e 6
* The Application Object: From Artifacts t0 APPlICATIONS. ...ccveiiirieiiirieirere ettt sttt st 6
* Binding the SOftware SUPPIY CRAIN ..ottt b ettt st b ettt ebens 7
« The Application Version: Moving Applications to a Single UNit Of TrUST......ccocviiviirierinieneieeseeeeseee s ee s 8
Section lll: The Control Plane: Governed Application LifeCycCles..........uuuirrrcrrrecrerensreeressenecscnesessnnesesssnesesnesessenees 8
* From "Proof-of-Work" t0 "Proof-0f-ComPlianCe ...ttt 8
* Policy as Code: Unifying GOVErnance WoOrKSTrEaMIS.ottt ettt sttt be ettt ns e ebeseens 9
* The Trusted Release Designation: Verifiable TrUST.. ...ttt sttt st 9
Section IV: Moving Trusted Applications to Production............uiieiieiiniiniiinniniinseciecssecsecsnessseseaesssesesaessnns 10
* The Governed Path to Promotion and DePIOYMENT.....ccciieiiirieirireieeetee ettt sbe et s sessesaesessesseseens 11
+ A Unified Workflow with “Promotion-t0-Commit” GItOPS.....cciivuerererieiriirieesesieestesieeeresseesessesaesessesessessessesessessssassessesens 12
Section V: The Visibility Layer: Turning Trust into an Observable, Verifiable Entity..........cccecvceivvnirinneininnernnnnen. 13
* The Activity LOg: AUAIT-FIrIENdlY REIEASES......oiuiiiiietiee ettt b sttt b ettt et b b e 13
« Strategic Insights: Persona-Driven Dashboards for Leadership.......occeirereiniieinieneeneeseese e 15
Section VI: FULUre CONSIAEIAtiONS.......ccciiiuiiiiiiiiinitittnt sttt ettt e sae s s s sa s sss e s s s st s s ae s saesesasssaesasness 15
« Extending the Trusted ReIEASE MOTEL......ccuciiiirieiriiieicireee ettt ettt se s e sse s s e s e e s e sesessesseseesesseneaneas 15
Section VII: The Trusted Release Model With JFrog APPTIUSL.........iiiieiiiniinnneiiiciinnneniecssssssenissssssssssssssssssssssssssssnses 17
Section VIII: Conclusion & ReCOMMENAALIONS........cceeiveiiiiiiiiiniiiiiiinitiitineeneeeeeseesseeesseessesessessssesessessssessssesnns 18
+ Adopting the Trusted Release Model Across the Enterprise: CheckliSt. ... 19

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 2

Executive Summary

For CISOs, ClIOs, and GRC (Governance, Risk, and Compliance) leaders, there is an inherent
conflict balancing speed and trust. Businesses need to deliver new features quickly to stay
competitive, but this can’t happen at the expense of security, compliance, or quality. To
increase development speed while preserving application integrity, leaders must move
beyond incremental tool improvements, and adopt a foundationally suitable architectural
framework.

JFrog refers to this framework as the Trusted Release Model, an approach that embeds trust,
governance, and security directly into high-velocity software delivery pipelines.

The model's three foundational pillars systematically address the critical governance gaps
left by previous software delivery approaches:

= System of Record for Applications: The model establishes a centralized, business-aware
registry for all software assets, transforming abstract concepts like ownership, business
risk, and maturity into programmable objects, and creating a single source of truth for
governance and automation.

= Automated Preventative Compliance: The model shifts compliance from reactive,
manual audits to proactive, automated governance, leveraging an integrated policy
engine that ensures compliance is a continuous, preventative measure, and not a post-
release discovery.

® I[mmutable Audit Trail: The model provides an unbreakable, APl-accessible chain of
evidence for every release, so you can instantly verify compliance with internal quality
standards and external industry regulations.

The Trusted Release Model can be broken down into 4 implementation phases:

® Phase 1: Establish the Foundation - System of Record

® Phase 2: Implement Governed Lifecycles - Control Plane

® Phase 3: Automate and Enforce - Operational Blueprint

® Phase 4: Scale and Observe - Visibility & Governance at Scale

This blueprint for the Trusted Release Model gives DevOps, Security and GRC leaders a
structured, actionable approach to redesign their software delivery processes, with the
explicit goal of enabling their organizations to release quality software with both speed and
trust.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 3

Section |
The Enterprise Trust Dilemma:
Moving Beyond Orchestration

Cl/CD pipelines transformed modern software development by automating individual
component builds and deployments. But teams now face a new, more complex challenge:
managing entire applications - often composed of hundreds of interdependent
microservices - as single, cohesive, and trusted products.

® The industry provided an Application Release Orchestration (ARO) solution. ARO
automates and sequences the steps to release entire applications across environments,
solving the technical coordination problem. For example, JFrog's Release Lifecycle
Management (RLM) manages a collection of artifacts, packaging them into an immutable
release candidate called a Release Bundle. It then promotes this bundle through a series
of environments from DEV to PRODUCTION.

= ARO has one fundamental limitation: it lacks business context. ARO doesn't
understand who owns the application, how critical it is, or what compliance rules apply.
This forces teams to track ownership, manage risk, and check compliance outside the
platform, creating friction, delays, and audit challenges. GRC teams are forced to rely on a
patchwork of ticketing systems and manual checklists to answer basic questions about
their applications.

® The Trusted Release Model goes beyond orchestration. This new approach closes the
governance gap by integrating business context, ownership, and a native policy engine
directly into the software supply chain.

Application Release Orchestration (ARO) The Trusted Release Model
A r..‘ A 5 Policy Engine
. o , ; o o o
Audit Ticketing Tribal ()} ()} ()}
Checklist System Knowledge : Audit Ticketing Tribal
' Checklist System Knowledge
® ® ® :
Release ’ I o Application ® Trusted .
Candidate ’ 1 7 Version Release ’
Promotion .
Gate !

Figure 1: ARO vs. The Trusted Release Model

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 4

An immutable release candidate provides a technical snapshot of the software at a specific
point in time. Governance with ARO requires a gating process where users rely on manual
workflows.

A Trusted Release is the final, approved state of a software application. An application earns
this distinction after passing an automated evidence-based policy. With the Trusted Release
Model, governance automates the process of checking a release against its business context
to ensure it meets policy.

The following table illustrates the differences between ARO and the Trusted Release Model:

Capability

Application Release Orchestration @ The Trusted Release Model

(ARO)

Unit of Management

Ownership

Governance

Release Status

Audit Trail

Business Context

Release Candidate (A technical
collection of artifacts)

Implicit (via naming conventions
or external systems)

External Gates (Reactive "proof-
of-work")

"Released" (A promotion to a final
stage)

Dispersed promotion logs

Absent (Requires external
correlation)

Application (A business-aware
system of record)

Explicit & Enforceable (defined
metadata field)

Integrated Unified Policy
(Proactive "proof-of-compliance")

"Trusted Release” (A
cryptographically provable status)

Centralized, immutable Activity
Log

Native (criticality, maturity, labels)

Table 1: ARO vs. The Trusted Release Model

All rights reserved 2025 © JFrog Ltd.

www.jfrog.com 5

Section Il:
The Trusted Release Model: How It Works

The Trusted Release Model's core is a definitive, centralized, and API-first system of record. It
turns anonymous artifacts into well-defined, business-aware entities. This section
deconstructs the core, programmable objects that make up this system of record,
transforming abstract governance concepts into manageable data structures.

The Application Object: From Artifacts to Applications

The model’s core innovation is the Application Object, which turns a collection of technical
files into a logical, business-aware entity, creating the foundation for intelligent, risk-aware

governance.
‘ Application Object ’
Unique Risk and Flexible Explicit Resources
Identifier Status Metadata Ownership

Figure 2: Application Object

The Application Object tracks these essential attributes:

® Unique Identifier: An immutable application_key providing a permanent, unique ID.

® Risk and Status: Fields for business criticality (e.g., low, high) and maturity (e.g.,
production) allow classification of risk and lifecycle status.

= Metadata: Extensible labels (e.g., pci-scope: true) provide a flexible way to apply
custom metadata for granular policy targeting.

® Explicit Ownership: The owners field provides a direct solution to manage
accountability. This eliminates manual effort in tracking down responsible teams during
an incident or audit.

® Resources: Directly links the application to its technical components such as artifacts,
packages, and builds for verifiable composition.

How It Works

You can create and manage the Application Object via a well-defined REST API. This

API-driven approach ensures the system of record is a dynamic, integrated part of
the software supply chain, not a static database.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 6

Binding the Software Supply Chain

With the Trusted Release Model, an application establishes ownership over the packages it
creates through a process called binding. This action creates a clear, auditable link between
the business entity of the application and the software components it maintains. When an
issue arises in a package, the application’s owners are directly accountable for the fix.

While an application establishes ownership over the packages it creates, a single version of a
specific application - the actual unit of release - is actually a composite of packages, all with
different owners. It might include packages the application itself owns, public open-source
components, or shared internal packages from other applications. This federated ownership
model creates a clear, scalable line of responsibility regardless of how many owners are

involved.
Application Version
Payment Gateway
Login Payment Transaction Encryption Fraud Detection
Service Service Service Service Service

Figure 3: Example of Different Microservices in an Application Version for a Payments Gateway

For example, a payments gateway might use a login package owned by a separate common-
utils application. If a vulnerability appears in the login functionality within the payments
gateway, the system of record immediately clarifies that the common-utils application
owners are responsible for addressing the issue. This eliminates ambiguity and ensures
problems go to the right team, a critical capability for managing risks and incidents at
enterprise scale.

How It Works

This demonstrates how a Bind Package API creates the ownership link. You can see
the ownership model within a release, for example, in , through the

Get Application Version Content API. The response for this endpoint includes an
owning application_key and a connection_levelfield (e.g., 1st party,
2nd_party, 3rd party)for each component, identifying which application is the
owner.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 7

http://jfrog.com/apptrust

The Application Version: Moving Applications to a Single
Unit of Trust

The Application Version is the immutable, verifiable, and atomic unit of release in the
Trusted Release Model. It represents a specific, versioned instance of an Application, with a
precise bill of materials at a single point in time.

Strategically, the Application Version is a step up from the immutable release candidate in
the ARO approach. While it can use the same underlying technology for immutability and
signing, its true significance comes from its direct link to the business-aware Application
Object. An Application Version inherits its parent Application’s owners, criticality, and
compliance labels, elevating it from a simple collection of artifacts to a "Unit of Trust" that is
ready for governance and policy enforcement. This context enables a more efficient,
intelligent form of governance. Policies are no longer blunt, one-size-fits-all instruments.

For example, a Unified Policy Engine applies risk-calibrated logic by using an application's
criticality attribute. You can write a policy to enforce the most stringent security checks on
applications where application.criticality == 'critical' while applying a baseline
standard to less critical systems. This dynamic enforcement allows organizations to focus
their security efforts where business risk is greatest.

Section llI:
The Control Plane: Governed
Application Lifecycles

With a robust system of record in place, the Trusted Release Model adds an active, intelligent
Control Plane to enforce governance. This is the model’s core, where declarative rules
become automated actions. This section details the Control Plane’s architecture, which
empowers GRC and security teams by transforming them from passive auditors into
proactive strategic decision makers.

From "Proof-of-Work" to "Proof-of-Compliance"

ARO systems rely on a reactive “proof-of-work” model. They collect evidence for validation
in quality and security gates, but the development platform remains passive. A human
auditor or external script must later inspect this evidence to check for compliance. This after-
the-fact validation is inefficient, error-prone, and creates a significant delay between a policy
violation and when it gets discovered.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 8

http://jfrog.com/learn/grc/grc

The Trusted Release Model fundamentally shifts to a proactive, “proof-of-compliance”
system. It acts as an automated auditor at every critical stage, enforcing compliance before a
release can proceed. Policy is no longer a checklist - it's built into the release process.

Policy as Code: Unifying Governance Workstreams

The Unified Policy Engine simplifies workflows for everyone involved in enterprise
governance.
® GRC Teams: An intuitive wizard lets GRC teams create rules without writing a single line
of code.
= Platform Engineers: The Unified Policy Engine provides more flexibility for platform and
security engineers to author complex policies using the industry-standard Rego language.

This dual-mode approach creates a common ground for collaboration. GRC leaders can
define high-level requirements, and platform teams can implement them as automated
“policy as code.” These policies are dynamic and scoped using Application Object labels for
granular control. For example, you can author a single policy and automatically apply it to all
applications labeled data-classification: confidential, ensuring consistent data
protection across the enterprise as an automated auditor at every critical stage, enforcing
compliance before a release can proceed. Policy is no longer a checklist - it's built into the
release process.

The Trusted Release Designation: Verifiable Trust

ARO systems rely on a reactive “proof-of-work” model. They collect evidence for validation
in quality and security gates, but the platform remains passive. A human auditor or external
script must later inspect this evidence to check for compliance. This after-the-fact validation
is inefficient, error-prone, and creates a significant delay between a policy violation and
when it gets discovered.

The Trusted Release Model fundamentally shifts to a proactive, “proof-of-compliance”
system. It acts as an automated auditor at every critical stage, enforcing compliance before a
release can proceed. Policy is no longer a checklist - it's built into the release process.

Policy Gate

Application
Version ’

Application
" Version

Evidence

Figure 4: How an Application Version Earns the Trusted Release Designation

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 9

The Trusted Release Model only deploys software it can verify and trust. An Application
Version earns Trusted Release status only when it successfully passes a designated release
gate policy during its promotion to production. “Trusted Release” is not a subjective label; it's
a formal, provable designation.

This event marks the culmination of the entire governance process, providing a definitive,
auditable “go/no-go” decision. If no policy is configured on the release gate, the version is
simply “released”, creating an intentional distinction between a standard deployment and
one cryptographically proven to meet the organization’s highest standards.

This architectural shift fundamentally changes the operational role of GRC teams, from
manually chasing down evidence after the fact, to becoming proactive rule-makers, codifying
trust and compliance standards directly into the platform. Automated enforcement via the
platform transforms GRC from a bottleneck to a strategic enabler of safe, fast software
delivery.

How It Works

The Trusted Release is a technically provable state recorded by the platform. When a
user calls the Release Application Version API, the policy engine evaluates the

release candidate. The evaluations block in the API response provides immutable
proof of this event. Specifically, a release gate object with a decision: "pass" and a
unique eval id constitutes the cryptographic evidence that the release is trusted.

Section IV: Moving Trusted Applications
to Production

Now that we've defined the model’s foundational objects and Control Plane, this section
provides a blueprint for how they operate in a real-world software delivery lifecycle.

It also details how the Trusted Release Model translates governance into an automated
practice, from initial development through production.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 10

The Governed Path to Promotion and Deployment

The model follows a standard enterprise promotion path below, but upgrades the process
by governing each transition as a recorded event rather than a deployment:

DEVELOPMENT ’H‘ QA }—)‘ STAGING }%‘ PRODUCTION

At each boundary, the Unified Policy Engine acts as an automated gatekeeper. It defines
policies for both stage entry (entry gate) and stage exit (exit gate), which creates a
series of checkpoints that ensure an Application Version meets progressively stricter criteria
as it matures.

For example, an entry gate policy for QA might require a completed security scan. The
entry gate for STAGING could require proof of successful end-to-end testing from the QA
stage. The release gate for PROD can enforce the most stringent requirements, like zero
critical CVEs and verifiable evidence of UAT (User Acceptance Testing) sign-off.

This gating structure is how the model actively manages the trade-off between speed and
trust. The Trusted Release Model provides the flexibility to match policy rigor to the specific
risk tolerance of the stage.

Early in the pipeline, such as in the Development and QA stages, teams can deploy warn
policies (.e.g., “Warn if test coverage is low”) to collect compliance data without disrupting
velocity. As the application moves closer to production, policies transition to fail conditions
(e.g., “Block if critical CVEs exist”), making trust enforceable. This strategic deployment of
policy types ensures teams move fast where risk is lower, and slow down only when risk and
compliance requirements are absolute.

Lifecycle Stages & Gates (Policy Based)

Entry Gate Exit Gate Entry Gate Exit Gate Release Gate
— DEV QA PROD
Completed Security Scan Zero Critical CVEs UAT Sign-Off

Figure 5: Policy-Based Gates

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 11

The Trusted Release Model creates a governed, evidence-based process that builds
and proves trust at every step.

A Unified Workflow with “Promotion-to-Commit” GitOps

A governed release process must integrate with automated deployment workflows. The
Trusted Release Model bridges governance and deployment with an event-driven
“Promotion-to-Commit” architecture. This workflow goes beyond ARO by making a policy-
verified event the trigger, not just a promotion step.

—i Trigger H Bridge H Action —1 Deployment H

Webhook fires on a Webhook invokes Pipeline commits to GitOps controller
Trusted Release a Cl/CD pipeline GitOps repository syncs the cluster

Figure 5: The “Promotion-to-Commit” GitOps Workflow

The workflow includes these key stages:

® Trigger: A successful release of an Application Version to the PROD stage, which earns
the Trusted Release designation by passing all release gate policies, fires a webhook (e.g.,
release completed).

® Bridge: This webhook invokes a CI/CD pipeline, passing the full context of the trusted
release.

® Action: The pipeline automatically performs a commit to a designated GitOps repository,
updating a configuration file to point to the new, verified Application Version.

= Deployment: A GitOps controller (like ArgoCD) detects the change in the Git repository
and automatically synchronizes the production Kubernetes cluster to the new state.

This workflow creates an auditable, immutable link between the governance decision and
the deployment action within the cluster. It also enriches the Git history with valuable
business and governance context.

For example, a commit message like “Deploying Application ‘billing-service’
(criticality: high) version 2.5.1, Trusted Release ID: eval-release-
e5£6g7h8" transforms the Git log from a simple record of code changes into a high-level,
business-aware audit log of trusted production deployments.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 12

Section V:
The Visibility Layer: Turning Trust into
an Observable, Verifiable Entity

The Trusted Release Model makes the abstract concept of “trust” a tangible, observable, and
verifiable attribute in the software supply chain. Since governance is ineffective without
visibility, this section details how the Model's architecture provides a critical visibility layer for
auditors, GRC leaders, and technical teams.

The Activity Log: Audit-Friendly Releases

The Trusted Release Model directly addresses the challenge of evidence collection by
providing an Activity Log which acts as an immutable source of truth. It eliminates inefficient
manual evidence gathering and fragmented system logs, replacing them with a central,
queryable, real-time feed of every significant lifecycle event within the system.

Key log entries include:
® Application creation and modification.
® Detect and record ownership changes.
® The binding and unbinding of packages.
m The creation of every Application Version.
® All successful and failed promotion attempts.
® The detailed results of every Unified Policy evaluation.

This comprehensive log creates an unbreakable chain of evidence for the entire release
lifecycle.

© AllProjects > AppTrust > Activity Log

Time Range © Event Type Subject Name O Subject Type O Subject Application

Events (904) Last updated: 21 Oct 2025,1059 C Y

Time Event Project Subject O Result Performed By

08 Oct 2025, 08:35

08 Oct 2025, 08:35

08 Oct 2025, 08:35

08 Oct 2025, 08:35

08 Oct 2025, 08:35

08 Oct 2025, 08:35

08 Oct 2025, 08:35

i i 88 2797
Sabct03s, ass ekl el to applcation verson .

Figure 6: Example of an Activity Log in JFrog AppTrust

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 13

How It Works

The Activity Log is an accessible APl endpoint, not just a Ul feature. Its robust filtering
capabilities let auditors and automated compliance systems get a complete, verifiable
history of any release with a single API call.

Strategic Insights: Persona-Driven Dashboards
for Leadership

The Trusted Release Model translates granular governance data—captured in the Activity
Log and Application Objects—into persona-driven views. This critical layer provides leaders
with the executive-level insight they need to manage risk, measure performance, and create
a continuous strategic feedback loop across the organization.

& AllProjects > AppTrust > Applications Pizza Shop

il Insights

Post-Release | Newly Detected Critical CVEs (D
1

Application Details 2 Edit (1]
E

83 Pizza Shop | Production | = High type:webapp | | team:frontend $ 4 41X 17 May 2025
Project Key Application Key Owners
gpizza O pizza-shop O yossi.shaul@jfrog.com
- Descril tion
Main pi ering web appli
R =
MTTR Apps Security Issues © critical @ High Medium New vs Fixed Apps Security Issues Overtime
by criticality
O High Medium ® New ® Fixed

01/2025 02/2025 03/2025 0472023 05/2025 06/2025 - 01/2025 02/2025 03/2025 0472023 05/2025 06/2025
Failure Recovery (DORA)

Figure 7: Example of a Dashboard in JFrog AppTrust

.'. DevOps and Platform Engineering Leaders: The dashboard should have

W% DORA metrics, giving them quantitative feedback on how governance policies
impact delivery performance. This helps teams find the optimal balance
between control and velocity.

Q Example: A DevOps leader can correlate stricter policies with DORA metrics

to make data-driven decisions about their governance strategy.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 14

q Security Leaders: Security leaders need aggregated vulnerability summaries
and risk trends, helping them move from a ticket-based view of risk to a
strategic understanding of their organization's overall security posture.

ﬂ Example: A Security leader can track application security maturity over time,
using those insights to modify policies and proactively address growing
security risks.

L= GRC Leaders and CISOs: They need a clear, enterprise-wide view of the
teams and applications global policies cover. This information allows leaders
to instantly identify and fix compliance gaps.

ﬂ Example: A CISO can identify a business unit with low policy adoption and
justify targeted training.

This visibility layer unlocks a strategic feedback loop, ensuring the platform becomes a single
system for continuous improvement and strategic decision-making by DevOps, Security, and
GRC leaders.

Section VI:
Future Considerations

Extending the Trusted Release Model

The Trusted Release Model provides a complete framework for release governance, but its
architectural vision extends across the entire software development lifecycle.

In the future, the model can extend to unify governance into a single plane, spanning from
the developer’s first line of code to the application running in production.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 15

Here is the plan for further integration of these stages:

Bl Code Stage

This stage should integrate governance directly into the developer's workflow. By
integrating with developer tools, policies can be enforced on code commits and
builds, providing immediate feedback on security vulnerabilities or license
compliance issues before they ever become part of a formal release candidate. This
shifts trust and security even further left.

é Runtime Stage

This stage should close the feedback loop between development and operations. By
integrating with runtime security and observability solutions, the Trusted Release
Model will provide continuous visibility into which specific Application Versions are
deployed on which clusters. This enables powerful capabilities, such as automatically
correlating a production incident with the exact bill of materials of the running
software or identifying all running instances of an application affected by a newly
discovered zero-day vulnerability.

This comprehensive vision, enabled by the Trusted Release Model, provides a central
governance platform for the entire enterprise software supply chain.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 16

Section VII:
The Trusted Release Model with JFrog
AppTrust

JFrog Platform

Project Lifecycle Stages & Gates (Policy Based)

Eg App Entry Gate Exit Gate Entry Gate Exit Gate Release Gate

App Versions

o [e]
o9 v.1.1.8 29 v.3.4.1

/A Evidence ™ Evidence Evidence

ARTIFACTORY

¥i Package Version ¥ Package Version

Cl Tools Evidence fif% Evidence

Figure 8: JFrog AppTrust Solution Overview

JFrog AppTrust implements the Trusted Release Model, which solves the dilemma that
traditional orchestration solutions can't handle. Application Release Orchestration (ARO) falls
short because it treats software as anonymous technical artifacts, forcing risk management
and compliance into manual, external workflows.

AppTrust closes the governance gap by fully integrating business context (like ownership and
criticality) and a Unified Policy Engine directly into the Software Supply Chain Platform.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 17

Here is how JFrog AppTrust helps you execute every element of the Trusted Release Model:

m System of Record: AppTrust establishes a System of Record where every application
becomes a business-aware entity.

® Unit of Release: The Application Version (the immutable unit of release) inherits this
crucial business context.

= Automated Compliance: AppTrust's Control Plane enforces a powerful “Proof-of-
Compliance” model during promotion across stages of the SDLC.

m Verifiable Trust: The model automatically grants Trusted Release status, only after the
application passes all evidence-based policy gates. Trust is not just a label - it's verified.

= Auditability & Visibility: The platform provides an immutable Activity Log for a complete
audit trail, with Persona-Driven Dashboards that instantly translate complex governance
data into strategic insights.

AppTrust transforms your software supply chain from a source of risk into a strategic,
competitive advantage.

Section VIII:
Conclusions & Recommendations

Managing software releases in a large-scale microservices environment presents a
fundamental challenge: balancing the speed of autonomy with the need for security and
stability. While decentralization helps teams move quickly, the result is often release
paralysis and production instability, fueled by siloed data and fragmented workflows.
We don’t need to abandon autonomy to solve these challenges. Instead, we can balance
speed and trust through an automated governance framework.

In this report, we provided a blueprint of the Trusted Release Model, a framework that can
be deployed using JFrog AppTrust in the JFrog Software Supply Chain Platform to give
enterprises speed, security, visibility and control over their software releases.

The Trusted Release Model's Core Tenets include:

® A Synchronized Cadence: Align technical releases with a business rhythm, like a SAFe
Program Increment.

® Provable Quality: Define a stable version not by a tag, but by a complete set of signed
attestations from automated quality gates.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 18

http://jfrog.com/apptrust
http://jfrog.com/platform

= The Atomic Unit of Release: Bundle entire multi-service applications into a single,
immutable Application Version.

= Automated Governance: Govern the Application Version's progression with automated
Unified Policy gates.

® Declarative Deployment: Deploy the approved release candidate with an automated
"Promotion-to-Commit" GitOps workflow.

This model transforms release management from a chaotic, high-risk manual effort into a
predictable, auditable, and automated strategic function of the business.

Adopting the Trusted Release Model Across the
Enterprise: Checklist

This checklist summarizes the key actions to implement the Trusted Release Model in a
structured, phased approach, using JFrog AppTrust.

Phase 1: Establish the Foundation (System of Record)

(] Conduct an inventory of all business-critical applications.

(] Onboard these applications into JFrog AppTrust using the Application API,
defining their owners, business criticality, and maturity levels.

(] Bind key first-party software packages to their owning applications to build an
initial bill of materials.

Phase 2: Implement Governed Lifecycles (Control Plane)

(] Model the organization's SDLC stages within the AppTrust lifecycle configuration
(e.g., DEV, QA, STAGING, PROD).

() Introduce simple, non-blocking (warn) policies for key quality gates (e.g., "Warn if
an Xray scan is missing before promoting to QA").

(] Automate the creation of Application Versions as a final step in successful C|
pipeline runs.

All rights reserved 2025 © JFrog Ltd. www.jfrog.com 19

Phase 3: Automate and Enforce (Operational Blueprint)

(] Mature the governance model by transitioning key policies from warn to fail to
actively enforce compliance (e.g., "Block release to PROD if critical CVEs exist").

(] Implement the "Promotion-to-Commit" GitOps workflow for a single pilot
application to prove end-to-end automation.

Phase 4: Scale and Observe (Visibility & Governance at Scale)

(] Roll out the standardized GitOps workflow across all application teams.

(] Define and implement global policies to enforce organization-wide security and
compliance standards.

(] Integrate the Activity Log APl with SIEM and internal auditing tools.

By following this blueprint, enterprises can harness the power of their microservice
architecture, resolving the "Speed vs. Trust" dilemma once and for all.

The Trusted Release Model empowers organizations to transform their software
supply chain from a source of risk into a strategic competitive advantage, delivering
solutions to market faster, with more confidence and verifiable trust than ever before.

Learn how JFrog AppTrust can help your organization transition to a Trusted Release
Model by booking a demo today!

http://jfrog.com/apptrust
https://jfrog.com/platform/schedule-a-demo/

	Cover
	A4 - 2
	A4 - 3
	A4 - 4
	A4 - 5
	A4 - 6
	A4 - 7
	A4 - 8
	A4 - 9
	A4 - 10
	A4 - 11
	A4 - 12
	A4 - 13
	A4 - 14
	A4 - 15
	A4 - 16
	A4 - 17
	A4 - 18
	A4 - 19
	A4 - 20

